Researchers complete seismic borehole in Kentucky

December 13, 2006

Lexington, KY (December 13, 2006) -- Drilling has been completed on the deepest borehole for seismic instruments in the eastern U.S. The four-inch diameter hole for the Central U.S. Seismic Observatory (CUSSO), located at Sassafras Ridge in Fulton County, Kentucky, reached a depth of 1,948 feet, where bedrock was encountered.

The location is near the most active part of the New Madrid Seismic Zone, the source of at least three major earthquakes in the winter of 1811-12, before the region was heavily populated and developed. This location will allow instruments in the seismic hole to gather the maximum amount of data from the region's earthquakes for thorough evaluation of their effects on bedrock and soil and the resulting ground motions.

"Now that the well has been completed, our focus will be on getting instruments installed and collecting data vital to the region," says Jim Cobb, director of the Kentucky Geological Survey (KGS) and state geologist

The partners in the project, including the University of Kentucky, KGS, and several federal agencies, will now determine the type and number of instruments to place in the shaft and at what depths to place them.

Five partners involved in the project committed nearly $300,000 to the drilling project. Much of the funding came from the U.S. Department of Energy through the Kentucky Research Consortium for Energy and Environment. The Department of Energy has an interest in the region's earthquakes due to uranium enrichment operations at the Paducah Gaseous Diffusion Plant.

Edward W. Woolery of UK's Department of Earth and Environmental Sciences and Zhenming Wang of KGS led the effort to plan and secure funding for the project. The next step in the process of completing the project will involve a workshop sponsored by the partners to gather input about the instruments to be placed in the observatory. The partners will apply to agencies such as the Department of Energy, the National Science Foundation, and other sources of funding for the purchase and installation of the instruments.

When instrumentation is completed, the observatory will be added to the Kentucky Seismic and Strong-motion Network, a series of monitoring stations operated by KGS and the Department of Earth and Environmental Sciences.

It will add new data on the origin, location, magnitude, and depth of earthquakes in this region to the information currently gathered by the network's 26 instruments.

Data collected will help geologists and engineers better define the earthquake hazard in the region. Knowing the hazard has implications for economic development in the region as well as specific applications for ongoing activities at the Paducah Gaseous Diffusion Plant.
-end-
The partners on the project include: The U.S. Department of Energy

The Kentucky Resource Consortium for Energy & the Environment, a partnership of Kentucky universities housed at the University of Kentucky

The University of Kentucky Department of Earth and Environmental Sciences

The Kentucky Geological Survey, a research institution at the University of Kentucky

The U.S. Geological Survey

University of Kentucky

Related Earthquakes Articles from Brightsurf:

AI detects hidden earthquakes
Tiny movements in Earth's outermost layer may provide a Rosetta Stone for deciphering the physics and warning signs of big quakes.

Undersea earthquakes shake up climate science
Sound generated by seismic events on the seabed can be used to determine the temperature of Earth's warming oceans.

New discovery could highlight areas where earthquakes are less likely to occur
Scientists from Cardiff University have discovered specific conditions that occur along the ocean floor where two tectonic plates are more likely to slowly creep past one another as opposed to drastically slipping and creating catastrophic earthquakes.

Does accelerated subduction precede great earthquakes?
A strange reversal of ground motion preceded two of the largest earthquakes in history.

Scientists get first look at cause of 'slow motion' earthquakes
An international team of scientists has for the first time identified the conditions deep below the Earth's surface that lead to the triggering of so-called 'slow motion' earthquakes.

Separations between earthquakes reveal clear patterns
So far, few studies have explored how the similarity between inter-earthquake times and distances is related to their separation from initial events.

How earthquakes deform gravity
Researchers at the German Research Centre for Geosciences GFZ in Potsdam have developed an algorithm that for the first time can describe a gravitational signal caused by earthquakes with high accuracy.

Bridge protection in catastrophic earthquakes
Bridges are the most vulnerable parts of a transport network when earthquakes occur, obstructing emergency response, search and rescue missions and aid delivery, increasing potential fatalities.

Earthquakes, chickens, and bugs, oh my!
Computer scientists at the University of California, Riverside have developed two algorithms that will improve earthquake monitoring and help farmers protect their crops from dangerous insects, or monitor the health of chickens and other animals.

Can a UNICORN outrun earthquakes?
A University of Tokyo Team transformed its UNICORN computing code into an AI-like algorithm to more quickly simulate tectonic plate deformation due to a phenomenon called a ''fault slip,'' a sudden shift that occurs at the plate boundary.

Read More: Earthquakes News and Earthquakes Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.