Discovery sheds new light on cause of earthquakes

December 13, 2006

Research at the University of Liverpool into a large fault zone in the Atacama Desert in northern Chile has produced new insight into how fluid pressure can cause earthquakes.

Scientists have found how fluids, such as water, become sealed within the earth's fault planes for a long period of time. This fluid pressure makes it easier for the earth's plates to move alongside each other, eventually resulting in an earthquake.

Dr Dan Faulkner explains: "The difficulty with predicting earthquakes is that we know so little about how fault planes work. Over the years we have found that even small stresses acting on the earth's plates can cause large earthquakes. For example the Loma Prieta earthquake in 1989 caused massive devastation, yet there was very little stress acting on the plate boundary to cause the quake in the first place.

"In theory, high stresses are needed to cause slip along a fault plane, but if something like pressurised water or gas gets inside the fault then it should act as a kind of cushion, making movement between plates easier and an earthquake more likely. Until now a problem with this theory was that as fluid pressures increased the rocks would crack and the fluids could escape through the cracks, reducing the 'cushion' effect. Our recent study, however, found that much smaller cracks surrounding the fault plane change the stresses acting on the rock, reducing the likelihood of significant cracks forming and allowing the fluid to escape."

The team measured the density of 'microcracks' in the rock near the Chile fault line and applied varying amounts of stress to the rock to see how it responded. They found the 'microcracks' changed the elasticity of the rock, which meant stresses that might normally occur at almost right angles to the fault line rotated to a 45 degree angle instead.

Under normal stresses fluid would build up to such as extent that the rock would break and the fluid would escape, reducing the risk of an earthquake. When stress, however, occurs at a 45 degree angle the rock is less likely to break and the low fluid pressures inside can cause earthquakes.

Dr Faulkner added: "We now need to conduct further study into where these fluids and gases are coming from. Scientists are currently drilling of the San Andreas Fault in California, to help us understand more fully the mechanics of fault zones and how earthquakes occur."

The San Andreas Fault Observatory at Depth (SAFOD) is a deep borehole observatory that will measure the physical conditions under which plate boundary earthquakes occur. Dr Faulkner is one of only two UK scientists who currently have access to rock drilled from the San Andreas Fault, which will be analysed in order to understand fault behaviour.
-end-
Dr Faulkner's research is published in Nature Magazine.

University of Liverpool

Related Stress Articles from Brightsurf:

Stress-free gel
Researchers at The University of Tokyo studied a new mechanism of gelation using colloidal particles.

Early life stress is associated with youth-onset depression for some types of stress but not others
Examining the association between eight different types of early life stress (ELS) and youth-onset depression, a study in JAACAP, published by Elsevier, reports that individuals exposed to ELS were more likely to develop a major depressive disorder (MDD) in childhood or adolescence than individuals who had not been exposed to ELS.

Red light for stress
Researchers from the Institute of Industrial Science at The University of Tokyo have created a biphasic luminescent material that changes color when exposed to mechanical stress.

How do our cells respond to stress?
Molecular biologists reverse-engineer a complex cellular structure that is associated with neurodegenerative diseases such as ALS

How stress remodels the brain
Stress restructures the brain by halting the production of crucial ion channel proteins, according to research in mice recently published in JNeurosci.

Why stress doesn't always cause depression
Rats susceptible to anhedonia, a core symptom of depression, possess more serotonin neurons after being exposed to chronic stress, but the effect can be reversed through amygdala activation, according to new research in JNeurosci.

How plants handle stress
Plants get stressed too. Drought or too much salt disrupt their physiology.

Stress in the powerhouse of the cell
University of Freiburg researchers discover a new principle -- how cells protect themselves from mitochondrial defects.

Measuring stress around cells
Tissues and organs in the human body are shaped through forces generated by cells, that push and pull, to ''sculpt'' biological structures.

Cellular stress at the movies
For the first time, biological imaging experts have used a custom fluorescence microscope and a novel antibody tagging tool to watch living cells undergoing stress.

Read More: Stress News and Stress Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.