Unexpected signaling role for foul-smelling hydrogen sulfide in cell response to protein misfolding

December 13, 2011

Cold Spring Harbor, NY -- Something rotten never smelled so sweet.

This is what members of a team of scientists at Cold Spring Harbor Laboratory (CSHL) are telling one another as they discuss a new finding they did not expect to make. They have discovered that hydrogen sulfide (H2S) - the flammable, highly toxic gas that we usually associate with the smell of rotten eggs in landfills and sewers - plays an important role in the regulation of a signaling pathway implicated in biological malfunctions linked to Alzheimer's and Parkinson's diseases, among others.

"H2S comes under the category of things that people think of as toxic and nasty, but which can actually be harnessed to serve a useful purpose," says CSHL Professor Nicholas K. Tonks, FRS, who led the research team. In fact, H2S, which is produced naturally in small quantities in various tissues, is a gasotransmitter, one of a family of gaseous signaling molecules that includes nitrous oxide (NO) and carbon monoxide (CO). Unlike growth factors, cytokines and hormones that act through receptors in the cell membrane, these gasotransmitters are able to permeate membranes and enter freely the interior of living cells.

Tonks and colleagues were intrigued by reports in the scientific literature suggesting that H2S was produced as part of the cell's response to what is called ER stress. The ER is the cellular organ called the endoplasmic reticulum. It is an extensive network of membranes spread throughout the cytosol, which is involved in protein synthesis and processing.

When the cell is placed under stress, specifically when newly formed proteins are being manufactured in the ER so rapidly that they do not fold properly, rendering them non-functional, the cell must make a decision either to slow down protein production to match its physiological requirements in the hope that proteins will begin to fold properly or, if that is not sufficient, to commit a form of suicide called apoptosis.

The surprise in the research performed by Tonks' team - which is published online today in Science Signaling - is that H2S plays a critical role in the exquisitely tuned signaling pathway through which cells make this fateful determination.

Navasona Krishnan, a postdoctoral fellow, performed an experiment to determine whether H2S could covalently modify an enzyme called PTP1B. Discovered by Tonks in 1988, PTP1B is a protein tyrosine phosphatase, or PTP - an enzyme that specifically removes phosphate groups from amino acid residues called tyrosines. This function is critical in regulating cellular signaling in normal and disease conditions.

H2S did indeed modify PTP1B, specifically on a cysteine amino acid residue in the enzyme's active site, which inactivated the enzyme. A number of subsequent experiments performed in collaboration with CSHL Professor Darryl Pappin, who directs the proteomics Shared Resource at the Laboratory, identified this modification and revealed that it occurred in vitro and in vivo.

Because PTP1B is itself a signaling pathway regulator, this inactivation was immediately understood to be important and potentially useful. Further experimentation revealed that the H2S-induced modification to PTP1B prevented this phosphatase from inactivating an enzyme called PERK, which is a sensor of the presence of unfolded proteins and a critical regulator of the cell's response to ER stress.

The completed puzzle is as follows: small amounts of hydrogen sulfide are produced when the cell senses ER stress; PTP1B undergoes a unique covalent modification at its active site in response to the H2S that is produced, which in turn prevents the phosphatase from dephosphorylating PERK thereby allowing the latter protein to play its specific regulatory role in response to the stress. Importantly, the process is fully reversible, such that this previously undiscovered pathway can act like a switch, to help fine-tune a response to stress that potentially can lead to cell death.

"We hypothesize that the controlled production of H2S could have a profound impact on how this part of the ER stress pathway - the PERK 'arm' - is regulated. When proteins are misfolded in response to cellular stress, the inactivation and reactivation of PTP1B appears to be one means by which the cell regulates its protein synthesis machinery and can exert tight control over whether it lives or dies, ," says Tonks.

The linkage of such regulation with human disease is a subject that bears further exploration. ER stress is causally related to the protein-folding-related pathologies seen in such illnesses as Alzheimer's and Parkinson's diseases, Tonks says. "What we are trying to do is understand the structure of PTP1B in the presence and absence of its modification by H2S - to define this modification in molecular detail and understand its importance to the control of this major signaling enzyme in normal and disease states."
-end-
"H2S-Induced sulfhydration of PTP1B and its role in the endoplasmic reticulum stress response," was published December 13, 2011 in Science Signaling. The authors are: Navasona Krishnan, Cexiong Fu, Darryl Pappin and Nicholas K. Tonks. The paper is available online at: http://stke.sciencemag.org/index.dtl.

About Cold Spring Harbor Laboratory

Founded in 1890, Cold Spring Harbor Laboratory (CSHL) has shaped contemporary biomedical research and education with programs in cancer, neuroscience, plant biology and quantitative biology. CSHL is ranked number one in the world by Thomson Reuters for impact of its research in molecular biology and genetics. The Laboratory has been home to eight Nobel Prize winners. Today, CSHL's multidisciplinary scientific community is more than 350 scientists strong and its Meetings & Courses program hosts more than 11,000 scientists from around the world each year. Tens of thousands more benefit from the research, reviews, and ideas published in journals and books distributed internationally by CSHL Press. The Laboratory's education arm also includes a graduate school and programs for undergraduates as well as middle and high school students and teachers. CSHL is a private, not-for-profit institution on the north shore of Long Island. For more information, visit www.cshl.edu.

Cold Spring Harbor Laboratory

Related Stress Articles from Brightsurf:

Stress-free gel
Researchers at The University of Tokyo studied a new mechanism of gelation using colloidal particles.

Early life stress is associated with youth-onset depression for some types of stress but not others
Examining the association between eight different types of early life stress (ELS) and youth-onset depression, a study in JAACAP, published by Elsevier, reports that individuals exposed to ELS were more likely to develop a major depressive disorder (MDD) in childhood or adolescence than individuals who had not been exposed to ELS.

Red light for stress
Researchers from the Institute of Industrial Science at The University of Tokyo have created a biphasic luminescent material that changes color when exposed to mechanical stress.

How do our cells respond to stress?
Molecular biologists reverse-engineer a complex cellular structure that is associated with neurodegenerative diseases such as ALS

How stress remodels the brain
Stress restructures the brain by halting the production of crucial ion channel proteins, according to research in mice recently published in JNeurosci.

Why stress doesn't always cause depression
Rats susceptible to anhedonia, a core symptom of depression, possess more serotonin neurons after being exposed to chronic stress, but the effect can be reversed through amygdala activation, according to new research in JNeurosci.

How plants handle stress
Plants get stressed too. Drought or too much salt disrupt their physiology.

Stress in the powerhouse of the cell
University of Freiburg researchers discover a new principle -- how cells protect themselves from mitochondrial defects.

Measuring stress around cells
Tissues and organs in the human body are shaped through forces generated by cells, that push and pull, to ''sculpt'' biological structures.

Cellular stress at the movies
For the first time, biological imaging experts have used a custom fluorescence microscope and a novel antibody tagging tool to watch living cells undergoing stress.

Read More: Stress News and Stress Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.