Tireless research reveals secrets of the 'sleep hormone'

December 13, 2011

Montreal, December 13, 2011 - A team from the Research Institute of the McGill University Health Centre (RI-MUHC) and McGill University has made a major breakthrough by unraveling the inner workings of melatonin, also known as the "sleep hormone." The research, conducted in collaboration with scientists in Italy, reveals the key role played by the melatonin receptor in the brain that promotes deep, restorative sleep. This discovery led the researchers to develop a novel drug called UCM765, which selectively activates this receptor. The results, published in The Journal of Neuroscience, may pave the way for the development of new and promising treatments for insomnia, a common public health problem that affects millions of people worldwide.

"We've spent many years developing medications that act selectively on a single melatonin receptor to specifically promote deep sleep, which we believe is the key to curing insomnia," says Dr. Gabriella Gobbi, a researcher in psychiatry at the RI-MUHC and the study's principal investigator. "Deep sleep has significant restorative effects, as well as the ability to increase memory and boost metabolism, while lowering blood pressure and slowing the heart rate." To date most treatments for insomnia, such as benzodiazepines, have not been selective for deep sleep, and can lead to dependence and cognitive impairment.

The researchers became interested in melatonin because of its effect on cerebral activity, and its involvement in sleep, depression and anxiety. Melatonin is a critical hormone produced by the pineal gland (located in the brain) in the absence of light stimulation. This hormone, present throughout the animal kingdom, is responsible for regulating sleep and circadian rhythms.

The research team discovered that two principal melatonin receptors, known as MT1 and MT2, played opposite roles in sleep regulation. "We discovered that MT1 receptors act on rapid eye movement (REM) sleep and block non-REM sleep, while MT2 receptors favour non-REM sleep, also known as deep sleep," explains Dr. Gobbi, who is also an associate professor of psychiatry in the Faculty of Medicine at McGill. "Specifying the role of MT2 receptors in melatonin represent a major scientific breakthrough that may designate them as a promising novel target for future treatments of insomnia. This discovery also explains the modest hypnotic effect of the over-the-counter melatonin pills, which act on both conflicting receptors."

Using the drug called UCM765, developed in collaboration with a group of chemists, under the leadership of Professor Tarzia in Urbino and Professor Mor in Parma, Italy which selectively binds to the MT2 receptor, the researchers observed an increase in the phases of deep sleep in rats and mice. Most importantly, UCM765 acts in a brain area called the reticular thalamus, which is the main driver of deep sleep. "This new molecule, contrary to traditional treatments for insomnia, increases deep sleep without destroying the "architecture" of sleep. In other words, it increases the duration of deep sleep while keeping the REM sleep episodes the same," says Dr. Gobbi.

"The development of this pharmacology by means of targeting deep sleep receptors to treat insomnia represents a major advancement in our ability to deal with this common health problem that affects people worldwide," concludes Dr. Vassilios Papadopoulos, Director of the Research Institute of the MUHC.
-end-
About the study

This paper was co-authored by Rafael Ochoa-Sanchez, Stefano Comai, Francis Rodriguez Bambico and Sergio Dominguez-Lopez, Gabriella Gobbi (Dept. of Psychiatry, McGill University and Research Institute of the MUHC); Baptiste Lacoste, Laurent Descarries (Depts. of Pathology, Cell Biology, Physiology, Université de Montréal); Annalida Bedini, Gilberto Spadoni, Giorgio Tarzia (Institute of Medicinal Chemistry, University of Urbino, Italy); Marco Mor, Silvia Rivara (University of Parma, Italy); Debora Angeloni (Scuola Superiore Sant'Anna, Pisa, Italy), Franco Fraschini (Dept.of Pharmacology, Chemiotherapy and Medical Toxicology, University of Milan, Italy).

This work was supported by grants from the Fonds de la recherche en Santé du Québec (FRSQ), by the Canadian Institutes of Health Research (CIHR), by the Canadian Foundation for Innovation (CFI), MSBi Valorisation, the McGill University Health Centre (MUHC), and the Quebec Ministry of Economic Development, Innovation and Exportation (MDEIE).

On the Web
McGill University Health Centre (MUHC): www.muhc.ca/
Research Institute of the MUHC: www.muhc.ca/research/dashboard
McGill University: www.mcgill.ca/
The Journal of Neuroscience: www.jneurosci.org/

For further information and to arrange interviews, please contact:

Julie Robert
Communications Coordinator
Public Affairs & Strategic Planning
McGill University Health Centre
514 934-1934 ext. 71381
julie.robert@muhc.mcgill.ca

McGill University Health Centre

Related Insomnia Articles from Brightsurf:

Insomnia treatment offers relief
Insomnia causing sleepless nights, daytime fatigue and poor health outcomes is a cycle worth busting, experts say, with depression, anxiety and stress a common co-occurrence.

Reduction in insomnia symptoms associated with non-invasive neurotechnology
For people with chronic insomnia, a good night's sleep is elusive.

The neurons that connect stress, insomnia, and the immune system
Researchers have pinpointed the circuit in the brain that is responsible for sleepless nights in times of stress--and it turns out that circuit does more than make you toss and turn.

Refined carbs may trigger insomnia, finds study
Women who consumed a diet high in added sugars and refined carbohydrates had a greater risk of developing insomnia, a new study by researchers at Columbia University has found.

Disturbed childhood can lead to adult insomnia
Parents should help their children with better sleep patterns, along with any problem behavioural issues, because this can lead to severe insomnia in middle age, a groundbreaking new study shows.

Study compares different strategies for treating insomnia
New research published in Worldviews on Evidence-Based Nursing indicates that for treating insomnia, stimulus control therapy (which reassociates the bed with sleepiness instead of arousal) and sleep restriction therapy are effective, and it is best to use them individually rather than together.

Brain cells involved in insomnia identified
An international team of researchers has identified, for the first time, the cell types, areas and biological processes in the brain that mediate the genetic risk of insomnia.

Mice sleeping fitfully provide clues to insomnia
Researchers at Washington University School of Medicine in St. Louis -- working with mice with sleep problems similar to those experienced by people with the genetic disease neurofibromatosis type 1 (NF1) -- believe the animals will help shed light on insomnia linked to NF1 or other factors.

Insomnia has many faces
Researchers at the Netherlands Institute for Neuroscience revealed that there are five types of insomnia.

Light pollution may cause insomnia in older adults
A new study is the first population-based investigation to report a significant association between artificial, outdoor light exposure at night and insomnia, as indicated by older adults' use of hypnotic drugs.

Read More: Insomnia News and Insomnia Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.