Microneedle sensors may allow real-time monitoring of body chemistry

December 13, 2011

Researchers from North Carolina State University, Sandia National Laboratories, and the University of California, San Diego have developed new technology that uses microneedles to allow doctors to detect real-time chemical changes in the body - and to continuously do so for an extended period of time.

"We've loaded the hollow channels within microneedles with electrochemical sensors that can be used to detect specific molecules or pH levels," says Dr. Roger Narayan, co-author of a paper describing the research, and a professor in the joint biomedical engineering department of NC State's College of Engineering and the University of North Carolina at Chapel Hill.

Existing technology relies on taking samples and testing them, whereas this approach allows continuous monitoring, Narayan explains. "For example, it could monitor glucose levels in a diabetic patient," Narayan says. Microneedles are very small needles in which at least one dimension - such as length - is less than one millimeter.

"The idea is that customized microneedle sensor arrays could be developed and incorporated into wearable devices, such as something like a wristwatch, to help answer specific medical or research questions," Narayan says. "It's also worth pointing out that microneedles are not painful."

In addition to its clinical applications, the new technology may also create opportunities for new research endeavors. For example, the microneedle sensor arrays could be used to track changes in lactate levels while people are exercising - rather than measuring those levels only before and after exercise.

The researchers developed a proof-of-concept sensor array incorporating three types of sensors, which could measure pH, glucose and lactate. However, Narayan says the array could be modified to monitor a wide variety of chemicals.

The paper, "Multiplexed Microneedle-based Biosensor Array for Characterization of Metabolic Acidosis," is published online in the journal Talanta. The paper was co-authored by Narayan and NC State Ph.D. students Philip Miller and Shelby Skoog as well as researchers from Sandia National Laboratories and the University of California, San Diego. The research was funded by the National Science Foundation, the National Institutes of Health, and the Department of Energy.
-end-


North Carolina State University

Related Engineering Articles from Brightsurf:

Re-engineering antibodies for COVID-19
Catholic University of America researcher uses 'in silico' analysis to fast-track passive immunity

Next frontier in bacterial engineering
A new technique overcomes a serious hurdle in the field of bacterial design and engineering.

COVID-19 and the role of tissue engineering
Tissue engineering has a unique set of tools and technologies for developing preventive strategies, diagnostics, and treatments that can play an important role during the ongoing COVID-19 pandemic.

Engineering the meniscus
Damage to the meniscus is common, but there remains an unmet need for improved restorative therapies that can overcome poor healing in the avascular regions.

Artificially engineering the intestine
Short bowel syndrome is a debilitating condition with few treatment options, and these treatments have limited efficacy.

Reverse engineering the fireworks of life
An interdisciplinary team of Princeton researchers has successfully reverse engineered the components and sequence of events that lead to microtubule branching.

New method for engineering metabolic pathways
Two approaches provide a faster way to create enzymes and analyze their reactions, leading to the design of more complex molecules.

Engineering for high-speed devices
A research team from the University of Delaware has developed cutting-edge technology for photonics devices that could enable faster communications between phones and computers.

Breakthrough in blood vessel engineering
Growing functional blood vessel networks is no easy task. Previously, other groups have made networks that span millimeters in size.

Next-gen batteries possible with new engineering approach
Dramatically longer-lasting, faster-charging and safer lithium metal batteries may be possible, according to Penn State research, recently published in Nature Energy.

Read More: Engineering News and Engineering Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.