Preparing for future human exploration, RAD measures radiation on journey to Mars

December 13, 2011

The Radiation Assessment Detector, the first instrument on NASA's next rover mission to Mars to begin science operations, was powered up and began collecting data Dec. 6, almost two weeks ahead of schedule. RAD is the only instrument scheduled to collect science data on the journey to Mars. The instrument is measuring the energetic particles inside the spacecraft to characterize the radiation environment an astronaut would experience on a future human mission to the Red Planet.

"The first data packets from RAD look great," said RAD principal investigator Don Hassler, science program director in the Space Studies Department at Southwest Research Institute. "We are seeing a strong flux in space, even inside the spacecraft, about four times higher doses of radiation than the baseline we measured on the launch pad from the RTG, or radioisotope thermoelectric generator, used to power the rover. It's very exciting to begin the science mission."

The Mars Science Laboratory, launched Nov. 26, will land a sophisticated car-sized rover called Curiosity on the surface of the planet in August 2012. Loaded with 10 instruments including RAD, Curiosity will traverse the landing site looking for the building blocks of life and characterizing factors that may influence life, such as the harsh radiation environment expected on Mars.

"RAD was designed for the science mission to characterize radiation levels on the surface of Mars, but an important secondary objective is measuring the radiation on the almost nine-month journey through interplanetary space, to prepare for future human exploration," said Hassler. "RAD is an important bridge between the science and exploration sides of NASA."

RAD will measure the relevant energetic particle species originating from galactic cosmic rays, the Sun and other sources. Of particular interest are the particles accelerated by coronal mass ejections on the surface of the Sun, which spew fast-moving clouds of radiation across the solar system.

"Not only will this give us insight into the physics of these giant clouds, but as particles from these clouds hit the spacecraft, an inward cascade of secondary particles is released inside the capsule, which could pose a potentially greater biological hazard," said Hassler. "Like an astronaut, RAD is tucked inside the spacecraft for the journey and will characterize these secondary particle showers. RAD also measures the higher energy galactic cosmic rays and the secondary particles that they produce inside the spacecraft."

RAD will collect data nearly continuously during cruise and will downlink data every 24 hours. Positioned in the left center of the rover, the instrument is about the size of a coffee can and weighs about three pounds, but has capabilities of an Earth-bound instrument nearly 10 times its size. RAD detects charged particles arriving from space and will measure neutrons and gamma rays coming from Mars' atmosphere above, or the surface material below, the rover.
-end-
SwRI, together with Christian Albrechts University in Kiel, Germany, built RAD with funding from the NASA Human Exploration and Operations Mission Directorate and Germany's national aerospace research center, Deutsches Zentrum für Luft- und Raumfahrt.

The Mars Science Laboratory is a project of NASA's Science Mission Directorate. The mission is managed by NASA's Jet Propulsion Laboratory, a division of Caltech. The mission's rover was designed, developed and assembled at JPL.

URL for image downloads is: http://swri.org/press/2011/rad.htm.

Information about the mission is available at: http://www.nasa.gov/msl and http://mars.jpl.nasa.gov/msl.

Southwest Research Institute

Related Mars Articles from Brightsurf:

Water on ancient Mars
A meteorite that originated on Mars billions of years ago reveals details of ancient impact events on the red planet.

Surprise on Mars
NASA's InSight mission provides data from the surface of Mars.

Going nuclear on the moon and Mars
It might sound like science fiction, but scientists are preparing to build colonies on the moon and, eventually, Mars.

Mars: Where mud flows like lava
An international research team including recreated martian conditions in a low-pressure chamber to observe the flow of mud.

What's Mars made of?
Earth-based experiments on iron-sulfur alloys thought to comprise the core of Mars reveal details about the planet's seismic properties for the first time.

The seismicity of Mars
Fifteen months after the successful landing of the NASA InSight mission on Mars, first scientific analyses of ETH Zurich researchers and their partners reveal that the planet is seismically active.

Journey to the center of Mars
While InSight's seismometer has been patiently waiting for the next big marsquake to illuminate its interior and define its crust-mantle-core structure, two scientists, have built a new compositional model for Mars.

Getting mac and cheese to Mars
Washington State University scientists have developed a way to triple the shelf life of ready-to-eat macaroni and cheese, a development that could have benefits for everything from space travel to military use.

Life on Mars?
Researchers from Hungary have discovered embedded organic material in a Martian meteorite found in the late 1970s.

New evidence of deep groundwater on Mars
Researchers at the USC Arid Climate and Water Research Center (AWARE) have published a study that suggests deep groundwater could still be active on Mars and could originate surface streams in some near-equatorial areas on Mars.

Read More: Mars News and Mars Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.