New screening approach identified potential drug combos for difficult-to-treat melanomas

December 13, 2012

PHILADELPHIA -- A novel approach to identifying potential anticancer drug combinations revealed that pairing cholesterol-reducing drugs called statins with cyclin-dependent kinase inhibitors might provide an effective approach to treating intractable melanomas driven by mutations in the NRAS and KRAS gene.

David F. Stern, Ph.D., professor of pathology at Yale University School of Medicine in New Haven, Conn., and colleagues reported these data in Cancer Discovery, a journal of the American Association for Cancer Research.

"The identification of gene mutations that drive specific subsets of cancers has had a major beneficial impact on treatments for these patients. But, such mutations can only be identified for some cancers. Some patients who have a specific cancer-driving genetic mutation never respond to the matching drug, while nearly all those who initially respond eventually become resistant to the effects of the drug and their cancers relapse," said Stern.

For this reason, Stern and colleagues reasoned that using drug combinations may be necessary to address the problem of drug resistance and enable effective treatment of cancers driven by signaling molecules that currently cannot be targeted, such as RAS.

They developed an in vitro, high-throughput screen to test the effectiveness of anticancer drugs, alone and in pairs, against three types of melanoma cell lines: those driven by mutations in the RAS gene (representing approximately 20 percent of human melanomas), those driven by mutations in the BRAF gene (40 to 50 percent of melanomas) and those without mutations in either the RAS or BRAF genes.

Through analysis of 150 drugs as single agents, Stern and colleagues narrowed their pool to 40 drugs for combination testing. Melanoma cell lines driven by BRAF and RAS were sensitive to different combinations of drugs. Some combinations that killed BRAF-driven melanoma cell lines were also effective against BRAF-driven melanoma cell lines resistant to a single agent used to treat patients with melanoma tumors characterized by BRAF gene mutations, and these combinations may prove to be helpful in preventing or managing resistance to these agents.

"Perhaps the most interesting observation was that several drug combinations that included a statin, a drug class used clinically to lower cholesterol, killed RAS-driven melanoma cell lines, given the lack of success in treating such cancers," said Stern.

One statin combination that showed efficacy in vitro, simvastatin plus flavopiridol, an inhibitor of proteins called cyclin-dependent kinases that activate cell division, also worked in vivo substantially reducing the growth of a RAS-driven human melanoma cell line transplanted into mice.

"These agents may be extremely useful as partner agents in combination therapy. Since multiple cyclin-dependent kinase inhibitors are already in human clinical trials, there may be a short path to testing the combination of a statin plus a cyclin-dependent kinase inhibitor in patients with RAS-driven melanoma," said Stern. "There is a great need for drugs to treat cancers driven by RAS. RAS proteins are inappropriately active in up to a third of all human cancers, including melanoma and lung and pancreatic cancers."

"This brings up the important point that our high-throughput screening approach is applicable to other types of cancer, including lung and pancreatic cancer," he added. "A major challenge is in picking the appropriate agents for combination screening, since with multiple doses per agent, the scale of a screen needed for all combinations grows rapidly. This requires careful evaluation of single agents, and analytical methods for choosing the best candidates for follow-up in combinations. For our work, the relatively small number of genetic subtypes was very important, so this system provides a great starting point for investigation of carcinomas (lung, pancreatic cancer, breast cancer), which are genetically more complex."
-end-
Follow the AACR on Twitter: @aacr #aacr
Follow the AACR on Facebook: http://www.facebook.com/aacr.org

About the American Association for Cancer Research

Founded in 1907, the American Association for Cancer Research (AACR) is the world's first and largest professional organization dedicated to advancing cancer research and its mission to prevent and cure cancer. AACR membership includes more than 34,000 laboratory, translational and clinical researchers; population scientists; other health care professionals; and cancer advocates residing in more than 90 countries. The AACR marshals the full spectrum of expertise of the cancer community to accelerate progress in the prevention, biology, diagnosis and treatment of cancer by annually convening more than 20 conferences and educational workshops, the largest of which is the AACR Annual Meeting with more than 17,000 attendees. In addition, the AACR publishes seven peer-reviewed scientific journals and a magazine for cancer survivors, patients and their caregivers. The AACR funds meritorious research directly as well as in cooperation with numerous cancer organizations. As the scientific partner of Stand Up To Cancer, the AACR provides expert peer review, grants administration and scientific oversight of team science and individual grants in cancer research that have the potential for near-term patient benefit. The AACR actively communicates with legislators and policymakers about the value of cancer research and related biomedical science in saving lives from cancer.

For more information about the AACR, visit www.AACR.org.

American Association for Cancer Research

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.