Unique CO2 monitoring technology streamlines process

December 13, 2012

ANTIGONISH, NS, DECEMBER 13, 2012 -- A made-in-Nova Scotia technology to allow for long-term automated monitoring of greenhouse gases is transforming the task into a practical process, even underground. Developed by Professor David Risk, of St. Francis Xavier University's (StFX) Department of Earth Sciences, the patented sensor-housings function throughout cold winters and without using much power--two significant benefits that competing technologies do not provide.

Since 2006, Risk and his research group have been monitoring greenhouse gases at surface locations as far south as Antarctica and as far north as Alaska. Their specialized sensor-housings, called forced diffusion chambers, have also been in place at Saskatchewan's Weyburn-Midale CO2 storage site--the largest in the world. Risk and his research group at StFX originally developed the technology to measure gas fluxes in natural environments, including permafrost, where warming could release untold amounts of trapped carbon.

While carbon injection and storage technologies are relatively mature, for CCS to fulfill its role in climate change mitigation, good CO2 detection must also come of age. "Having direct sensing of CO2 would allow us to roll out the whole (CCS) technology in a much better way and with better confidence of containment," says Risk.

His next step is to marry the forced diffusion chambers with fibre-optic CO2 sensors. A Carbon Management Canada (CMC) funded research collaboration among investigators at five Canadian universities is supporting development of this novel direct-sensing technology. Peter Wild of the University of Victoria is the Lead Principal Investigator on the CMC-funded project, and is lending his expertise in fibre-optic sensing to the collaboration. CMC is a national network that funds research to reduce carbon emissions in the fossil energy industry and other large-scale emitters.

Current methods of direct-detection include periodically halting CO2-injection to take samples, or using a secondary well to monitor CO2 in the primary well where injection is taking place. In contrast, explains Risk, fibre-optic sensors would be much more practical and cost-effective.

Using Risk's membrane-based housings with fibre optic sensors offers the ability to estimate rates of CO2 migration and possibly also to act as selective filters, allowing CO2 to touch the sensors, but filtering out unwanted gases. His team will design the membrane-based housings in close collaboration with the fibre optics team.

Risk's experience monitoring CO2 in extreme environments will be invaluable when it comes to putting the sensors 1.5 kilometres down a well or potentially 2 kilometres across the ocean subsurface. High pressures and temperatures deep underground, not to mention interfering gases and chemical darkening of the fibre optics are some of the challenges that the researchers face.

An earth scientist with a knack for designing instruments and a passion for the great outdoors, Risk says he is one of the project team members who will "act as a conduit to ease those technologies into the real world." His role, he notes, includes keeping an eye out for confounding variables, "so what's happening on the bench can also happen in the environment."

The forced diffusion chambers are marketed through Forerunner Research, a company Risk established because there were no Canadian businesses operating in this highly specialized area.

"We really wanted to see (the technology) commercialized from Canada," Risk said. "Forerunner was formed when it was clear that there was no single receptor in the right market space, and with the right expertise . . . for made-in Canada commercialization, we had no options."

The company, which provides instruments as well as monitoring services, is poised to expand the technology's applications to monitoring gases at industrial sites, such as landfills, sour gas injection operations, and carbon capture and storage (CCS) sites.
-end-
For interviews with David Risk:

Cindy MacKenzie, Manager of Marketing and Communications
St. Francis Xavier University
Antigonish, NS, Canada
T: (902) 867-2401
E: cmackenz@stfx.ca

About Carbon Management Canada

Carbon Management Canada is a national network that funds research and promotes the transfer to practice of knowledge and technologies to reduce CO2 emissions in the fossil energy industry and other large stationary emitters. The Network has over 160 investigators, agreements with 27 Canadian universities, and has invested $22 million in 44 research projects.

CMC Research Institutes

Related Greenhouse Gases Articles from Brightsurf:

Mitigation of greenhouse gases in dairy cattle through genetic selection
Researchers in Spain propose mitigating methane production by dairy cattle through breeding.

Researchers control cattle microbiomes to reduce methane and greenhouse gases
''Now that we know we can influence the microbiome development, we can use this knowledge to modulate microbiome composition to lower the environmental impact of methane from cows by guiding them to our desired outcomes,'' Ben-Gurion University of the Negev Prof Mizrahi says.

A new look into the sources and impacts of greenhouse gases in China
Special issue of Advances in Atmospheric Sciences reveals new findings on China's GHG emissions and documents changes in local and regional environments.

New catalyst recycles greenhouse gases into fuel and hydrogen gas
Scientists have taken a major step toward a circular carbon economy by developing a long-lasting, economical catalyst that recycles greenhouse gases into ingredients that can be used in fuel, hydrogen gas, and other chemicals.

Making microbes that transform greenhouse gases
A new technique will help not only reduce greenhouse gas emissions, but the potential to reduce the overall dependence on petroleum.

Reducing greenhouse gases while balancing demand for meat
Humans' love for meat could be hurting the planet. Many of the steps involved in the meat supply chain result in greenhouse gas emissions.

White people's eating habits produce most greenhouse gases
White individuals disproportionately affect the environment through their eating habits by eating more foods that require more water and release more greenhouse gases through their production compared to foods black and Latinx individuals eat, according to a new report published in the Journal of Industrial Ecology.

Degrading plastics revealed as source of greenhouse gases
Researchers from the University of Hawai'i at Mānoa School of Ocean and Earth Science and Technology (SOEST) discovered that several greenhouse gases are emitted as common plastics degrade in the environment.

What natural greenhouse gases from wetlands and permafrosts mean for Paris Agreement goals
Global fossil fuel emissions would have to be reduced by as much as 20 percent more than previous estimates to achieve the Paris Agreement targets, because of natural greenhouse gas emissions from wetlands and permafrost, new research has found.

Greenhouse gases were the main driver of climate change in the deep past
Greenhouse gases were the main driver of climate throughout the warmest period of the past 66 million years, providing insight into the drivers behind long-term climate change.

Read More: Greenhouse Gases News and Greenhouse Gases Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.