Novel NIST process is a low-cost route to ultrathin platinum films

December 13, 2012

A research group at the National Institute of Standards and Technology (NIST) has developed a relatively simple, fast and effective method of depositing uniform, ultrathin layers of platinum atoms on a surface.* The new process exploits an unexpected feature of electrodeposition of platinum--if you drive the reaction much more strongly than usual, a new reaction steps in to shuts down the metal deposition process, allowing an unprecedented level of control of the film thickness.

Platinum is a widely used industrial catalyst--in automobile catalytic converters and hydrogen fuel cells--as well as a key component in microelectronics, so the discovery may have widespread application in the design and manufacture of platinum-based devices.

The metal is rare, and hence very pricey, so materials engineers try to use it sparingly as a thin layer on a substrate. They'd like to be able to control the deposition process down to uniform, single layers of atoms. Unfortunately, platinum doesn't always cooperate.

The model system studied at NIST--depositing a platinum layer on gold by electroplating--demonstrates the challenging nature of the problem. A voltage is applied to drive the deposition of platinum from an electrode onto the gold surface in an aqueous solution. Normally, this leads to a patchy and rough surface rather than the desired smooth and even layer of platinum, because platinum tends to attach first to any defects on the gold surface, and then tends to attach to itself, rather than the gold.

The NIST team has found that increasing the voltage, the driving force of the reaction, far higher than normal to the point where the water molecules start to break down and hydrogen ions form, leads to an unexpected and useful result. The hydrogen quickly forms a layer covering the freshly deposited platinum islands and completely quenches further metal deposition. Using a battery of analytic techniques, including a quartz crystal microbalance, X-ray photoelectron spectroscopy and scanning tunneling microscopy, the group found that the formation of the hydrogen layer was rapid enough to restrict deposition to the formation of a single layer of platinum atoms. The team further discovered that by pulsing the applied voltage, they could selectively remove the hydrogen layer to enable the platinum deposition process to be repeated to form another layer.

The deposition process occurs in a single plating bath and is surprisingly fast--1,000 times faster than making comparable films using molecular beam epitaxy, for example. It's also faster, simpler and less prone to contamination than other electrochemical techniques for depositing platinum films, making it much less expensive.
The novel technique, the researchers say, may also work with a number of other metal and alloy combinations, a subject of ongoing research.

* Y. Liu, D. Gokcen, U. Bertocci and T.P. Moffat. Self-terminating growth of platinum films by electrochemical deposition. Science, v. 338, 1327, Dec. 7, 2012. Doi: 10.1126/science.1228925.

National Institute of Standards and Technology (NIST)

Related Gold Articles from Brightsurf:

The "gold" in breast milk
Breast milk strengthens a child's immune system, supporting the intestinal flora.

From nanocellulose to gold
When nanocellulose is combined with various types of metal nanoparticles, materials are formed with many new and exciting properties.

Research brief: 'Fool's gold' may be valuable after all
In a breakthrough new study, scientists and engineers at the University of Minnesota have electrically transformed the abundant and low-cost non-magnetic material iron sulfide, also known as 'fool's gold' or pyrite, into a magnetic material.

Water molecules are gold for nanocatalysis
Nanocatalysts made of gold nanoparticles dispersed on metal oxides are very promising for the industrial, selective oxidation of compounds, including alcohols, into valuable chemicals.

As electronics shrink to nanoscale, will they still be good as gold?
As circuit interconnects shrink to nanoscale, will the pressure caused by thermal expansion when current flows through wires cause gold to behave more like a liquid than a solid -- making nanoelectronics unreliable?

Peppered with gold
Terahertz waves are becoming more important in science and technology.

No need to dig too deep to find gold!
Why are some porphyry deposits rich in copper while others contain gold?

An 18-carat gold nugget made of plastic
ETH researchers have created an incredibly lightweight 18-carat gold, using a matrix of plastic in place of metallic alloy elements.

What happens to gold nanoparticles in cells?
Gold nanoparticles, which are supposed to be stable in biological environments, can be degraded inside cells.

Turning 'junk' DNA into gold
Mining the rich uncharted territory of the genome or genetic material of a cancer cell has yielded gold for Princess Margaret scientists: new protein targets for drug development against prostate cancer.

Read More: Gold News and Gold Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to