Reality check for DNA nanotechnology

December 13, 2012

Two major barriers to the advancement of DNA nanotechnology beyond the research lab have been knocked down. This emerging technology employs DNA as a programmable building material for self-assembled, nanometer-scale structures. Many practical applications have been envisioned, and researchers recently demonstrated a synthetic membrane channel made from DNA. Until now, however, design processes were hobbled by a lack of structural feedback. Assembly was slow and often of poor quality. Now researchers led by Prof. Hendrik Dietz of the Technische Universitaet Muenchen (TUM) have removed these obstacles.

One barrier holding the field back was an unproven assumption. Researchers were able to design a wide variety of discrete objects and specify exactly how DNA strands should zip together and fold into the desired shapes. They could show that the resulting nanostructures closely matched the designs. Still lacking, though, was the validation of the assumed subnanometer-scale precise positional control. This has been confirmed for the first time through analysis of a test object designed specifically for the purpose. A technical breakthrough based on advances in fundamental understanding, this demonstration has provided a crucial reality check for DNA nanotechnology.

In a separate set of experiments, the researchers discovered that the time it takes to make a batch of complex DNA-based objects can be cut from a week to a matter of minutes, and that the yield can be nearly 100%. They showed for the first time that at a constant temperature, hundreds of DNA strands can fold cooperatively to form an object -- correctly, as designed -- within minutes. Surprisingly, they say, the process is similar to protein folding, despite significant chemical and structural differences. "Seeing this combination of rapid folding and high yield," Dietz says, "we have a stronger sense than ever that DNA nanotechnology could lead to a new kind of manufacturing, with a commercial, even industrial future." And there are immediate benefits, he adds: "Now we don't have to wait a week for feedback on an experimental design, and multi-step assembly processes have suddenly become so much more practical."

Atomically precise control

To test the assumption that discrete DNA objects could be assembled as designed with subnanometer precision, TUM biophysicists collaborated with scientists at the MRC Laboratory of Molecular Biology in Cambridge, UK. They produced a relatively large, three-dimensional DNA-based structure, asymmetrical to help determine the orientation, and incorporating distinctive design motifs.

Subnanometer-resolution imaging with low-temperature electron microscopy enabled the researchers to map the object -- which comprises more than 460,000 atoms -- with subnanometer-scale detail. Because the object incorporates, in effect, a whole library of different design elements, it will also serve as a resource for further study. The results, reported in Proceedings of the National Academy of Sciences, not only demonstrate atomically precise assembly, but also show that such structures, formerly thought to be jelly-like and flexible, are rigid enough to be probed by electron microscopy.

Fast processing, near-100% yields

In contrast, DNA objects with 19 different designs - including plate-like, gear-like, and brick-like shapes - were used for a second series of experiments at TUM, reported in the latest issue of Science. Here the researchers' main focus was on the dynamics of DNA folding and unfolding. The usual self-assembly process is often described as a "one-pot reaction": Strands of DNA that will serve as the template, instructions, and building material for a designed object are placed together at a relatively high temperature where they will remain separate; the temperature is gradually lowered, and somewhere along the line the DNA strands zip together to form the desired structures.

Observing this process in unprecedented detail, the TUM researchers discovered that all of the action takes place within a specific and relatively narrow temperature range, which differs depending on the design of the object. One practical implication is that, once the optimal temperature for a given design has been determined, DNA self-assembly - nanomanufacturing, in essence - could be accomplished through fast processes at constant temperatures. Following up on this lead, the researchers found that they could "mass-produce" objects made from hundreds of DNA strands within minutes instead of days, with almost no defective objects or by-products in the resulting batch.

"Besides telling us that complex DNA objects are manufacturable," Dietz says, "these results suggest something we hardly dared to imagine before - that it might be possible to assemble DNA nanodevices in a cell culture or even within a living cell."

From the viewpoint of fundamental biology, the most intriguing result of these experiments may be the discovery that DNA folding resembles protein folding more closely than anticipated. Chemically and structurally, the two families of biomolecules are quite different. But the researchers observed clearly defined "cooperative" steps in the folding of complex DNA objects, no different in principle from mechanisms at work in protein folding. They speculate that further experiments with self-assembly of designed DNA objects could help to unravel the mysteries of protein folding, which is more complex and less accessible to direct study.
-end-
This work was supported by the European Research Council (HD, Starting Grant #256270); the German Research Foundation (DFG) through the Excellence Clusters CIPSM and NIM, the TUM Institute for Advanced Study, and the Collaborative Research Center SFB863; and the Medical Research Council.

Original publications:

Xiao-chen Bai, Thomas G. Martin, Sjors H. W. Scheres, Hendrik Dietz. Cryo-EM structure of a 3D DNA-origami object. Proceedings of the National Academy of Sciences of the USA, Dec. 4, 2012, 109 (49) 20012-20017; on-line in PNAS Early Edition, Nov. 19, 2012. DOI: 10.1073/pnas.1215713109

Jean-Philippe J. Sobczak, Thomas G. Martin, Thomas Gerling, Hendrik Dietz. Rapid folding of DNA into nanoscale shapes at constant temperature. Science, vol. 338, issue 6113, pp. 1458-1461. DOI: 10.1126/science.1229919

See also: Martin Langecker, Vera Arnaut, Thomas G. Martin, Jonathan List, Stephan Renner, Michael Mayer, Hendrik Dietz, and Friedrich C. Simmel. Synthetic lipid membrane channels formed by designed DNA nanostructures. Science, vol. 338, issue 6109, pp. 932-936. DOI: 10.1126/science.1225624

Contact:

Prof. Hendrik Dietz
Technische Universitaet Muenchen
Physics Dept., Walter Schottky Institute / ZNN
Am Coulombwall 4a, 85748 Garching, Germany
Tel: +49 (0)89 289 11615
E-mail: dietz@tum.de
Web: http://bionano.physik.tu-muenchen.de

Technische Universitaet Muenchen (TUM) is one of Germany's leading universities. It has roughly 480 professors, 9,000 academic and non-academic staff, and 32,000 students. It focuses on the engineering sciences, natural sciences, life sciences, medicine, and economic sciences. After winning numerous awards, it was selected as an "Elite University" in 2006 and 2012 by the Science Council (Wissenschaftsrat) and the German Research Foundation (DFG). In both international and national rankings, TUM is rated as one of Germany's top universities. TUM is dedicated to the ideal of a top-level research-based entrepreneurial university. The university's global presence includes offices in Beijing (People's Republic of China), Boston (USA), Brussels (Belgium), Cairo (Egypt), Mumbai (India) and Sao Paulo (Brazil). The German Institute of Science and Technology (GIST), founded in 2002 in Singapore, is the first research campus of a German university abroad. www.tum.de

A video is available here: https://www.youtube.com/watch?v=f3QWqn4DAg0

Technical University of Munich (TUM)

Related DNA Articles from Brightsurf:

A new twist on DNA origami
A team* of scientists from ASU and Shanghai Jiao Tong University (SJTU) led by Hao Yan, ASU's Milton Glick Professor in the School of Molecular Sciences, and director of the ASU Biodesign Institute's Center for Molecular Design and Biomimetics, has just announced the creation of a new type of meta-DNA structures that will open up the fields of optoelectronics (including information storage and encryption) as well as synthetic biology.

Solving a DNA mystery
''A watched pot never boils,'' as the saying goes, but that was not the case for UC Santa Barbara researchers watching a ''pot'' of liquids formed from DNA.

Junk DNA might be really, really useful for biocomputing
When you don't understand how things work, it's not unusual to think of them as just plain old junk.

Designing DNA from scratch: Engineering the functions of micrometer-sized DNA droplets
Scientists at Tokyo Institute of Technology (Tokyo Tech) have constructed ''DNA droplets'' comprising designed DNA nanostructures.

Does DNA in the water tell us how many fish are there?
Researchers have developed a new non-invasive method to count individual fish by measuring the concentration of environmental DNA in the water, which could be applied for quantitative monitoring of aquatic ecosystems.

Zigzag DNA
How the cell organizes DNA into tightly packed chromosomes. Nature publication by Delft University of Technology and EMBL Heidelberg.

Scientists now know what DNA's chaperone looks like
Researchers have discovered the structure of the FACT protein -- a mysterious protein central to the functioning of DNA.

DNA is like everything else: it's not what you have, but how you use it
A new paradigm for reading out genetic information in DNA is described by Dr.

A new spin on DNA
For decades, researchers have chased ways to study biological machines.

From face to DNA: New method aims to improve match between DNA sample and face database
Predicting what someone's face looks like based on a DNA sample remains a hard nut to crack for science.

Read More: DNA News and DNA Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.