Engineers roll up their sleeves -- and then do same with inductors

December 13, 2012

CHAMPAIGN, Ill. -- On the road to smaller, high-performance electronics, University of Illinois researchers have smoothed one speed bump by shrinking a key, yet notoriously large element of integrated circuits.

Three-dimensional rolled-up inductors have a footprint more than 100 times smaller without sacrificing performance. The researchers published their new design paradigm in the journal Nano Letters.

"It's a new concept for old technology," said team leader Xiuling Li, a professor of electrical and computer engineering at the University of Illinois.

Inductors, often seen as the sprawling metal spirals on computer chips, are essential components of integrated circuits. They store magnetic energy, acting as a buffer against changes in current and modulating frequency - especially important in radio-frequency wireless devices. However, they take up a lot of space. Inductance depends on the number of coils in the spiral, so engineers cannot make them smaller without losing performance.

In addition, the larger the area the inductor occupies, the more it interfaces with the substrate the chip is built on, exacerbating a hindering effect called parasitic capacitance. Researchers have developed some three-dimensional inductor structures to solve the dual problems of space and parasitic capacitance, but these methods are complex and use techniques that are difficult to scale up to manufacturing levels.

The new inductor design uses techniques Li's group previously developed for making thin films of silicon nitrate, merely tens of nanometers in thickness, that roll themselves up into tubes. The research team used industry-standard two-dimensional processing to pattern metal lines on the film before rolling, creating a spiral inductor.

"We're making 3-D structures with 2-D processing," Li said. "Instead of spreading this out in a large area to increase inductance, we can have the same inductance but packed into a much smaller area."

Using the self-rolling technique, the researchers can shrink the area needed for a radio-frequency inductor to a scant 45 microns by 16 microns - more than 100 times smaller than the area an equivalent flat spiral would require.

The design can be adjusted to fit target parameters including metal thickness and type, frequency, tube diameter and number of turns. According to Li, this technique could be used for capacitors and other integrated circuit elements as well.

Now, Li's group is working to produce high-performance inductor prototypes, in collaboration with electrical and engineering professor Jose Schutt-Aine. Preliminary experimental data show strong correlation with the modeled designs.

"Once we have optimized this process, we should be able to make an integrated circuit with a completely different platform that could be much smaller," Li said. "It's an ambitious goal."
-end-
The National Science Foundation and the Office of Naval Research supported this work. U. of I. visiting researcher Wen Huang, postdoctoral researcher Xin Yu, graduate student Paul Froeter and mechanical science and engineering professor Placid Ferreira were co-authors of this study. Li also is affiliated with the Beckman Institute for Advanced Science and Technology, the Micro and Nanotechnology Lab, and the Frederick Seitz Materials Research Lab, all at the U. of I.

Editor's note: To reach Xiuling Li, call 217-265-6354; email xiuling@illinois.edu.

The paper, "On-Chip Inductors with Self-Rolled-Up SiNx Nanomembrane Tubes: A Novel Design Platform for Extreme Miniaturization," is available online.

University of Illinois at Urbana-Champaign

Related Integrated Circuits Articles from Brightsurf:

An integrated approach to ultrasound imaging in medicine and biology
Announcing a new article publication for BIO Integration journal. In this editorial, Co-Editor-in-Chief, Pingtong Huang considers an integrated approach to ultrasound imaging in medicine and biology.

Transistor-integrated cooling for a more powerful chip
EPFL researchers have created a single chip that combines a transistor and micro-fluidic cooling system.

Tiniest secrets of integrated circuits revealed with new imaging technique
The secrets of the tiniest active structures in integrated circuits can be revealed using a non-destructive imaging technique, shows an international team of scientists from JKU and Keysight Technologies (Austria), ETH/EPFL/PSI and IBM Research - Europe (Switzerland) and from UCL (UK).

Comprehensive review of heterogeneously integrated 2D materials
In a paper published in NANO, a group of researchers from Sungkyunkwan University, South Korea provide a comprehensive review of heterogeneously integrated two dimensional (2D) materials from an extensive library of atomic 2D materials with selectable material properties to open up fascinating possibilities for the design of functional novel devices.

Large scale integrated circuits produced in printing press
Researchers at Linköping University and RISE, Campus Norrköping, have shown for the first time that it is possible to print complete integrated circuits with more than 100 organic electrochemical transistors.

Integrated solutions for the Indus Basin
New framework helps decision makers find science-based pathways to address water resources and connected sustainability challenges in the Indus River basin.

Rethinking how cholesterol is integrated into cells
Cholesterol is best known in connection with cardiovascular disease, but cholesterol is also vital for many fundamental processes in the body.

Climate protection and clean air: An integrated approach
From September 23 to 25, 2019, heads of government from around the world will convene at the United Nations General Assembly to discuss efforts to advance climate action and global sustainable development.

Wired for sound: A third wave emerges in integrated circuits
A research renaissance into chip-based control of light-sound interactions could transform our 5G networks, satellite communications and defense industries.

Unraveling the brain's reward circuits
Food, alcohol, and certain drugs all act to reduce the activity of hunger neurons and to release reward signals in the brain, but alcohol and drugs rely on a different pathway than does food, according to a new study led by University of Pennsylvania biologists.

Read More: Integrated Circuits News and Integrated Circuits Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.