Climate warming unlikely to cause near-term extinction of Amazon trees, but threats remain

December 13, 2012

ANN ARBOR -- A new genetic analysis has revealed that many Amazon tree species are likely to survive human-caused climate warming in the coming century, contrary to previous findings that temperature increases would cause them to die out.

However, the authors of the new study warn that extreme drought and forest fires will impact Amazonia as temperatures rise, and the over-exploitation of the region's resources continues to be a major threat to its future. Conservation policy for the Amazon should remain focused on reducing global greenhouse-gas emissions and preventing deforestation, they said.

The study by University of Michigan evolutionary biologist Christopher Dick and his colleagues demonstrates the surprising age of some Amazonian tree species - more than 8 million years - and thereby shows that they have survived previous periods as warm as many of the global warming scenarios forecast for the year 2100.

The paper is scheduled for online publication Dec. 13 in the journal Ecology and Evolution. The new study is at odds with earlier papers, based on ecological niche-modeling scenarios, which predicted tree species extinctions in response to relatively small increases in global average air temperatures.

"Our paper provides evidence that common Amazon tree species endured climates warmer than the present, implying that - in the absence of other major environmental changes - they could tolerate near-term future warming under climate change," said Dick, an associate professor of ecology and evolutionary biology and acting director of the U-M Herbarium.

But study co-author Simon Lewis of University College London and the University of Leeds cautioned that "the past cannot be compared directly with the future."

"While tree species seem likely to tolerate higher air temperatures than today, the Amazon forest is being converted for agriculture and mining, and what remains is being degraded by logging and increasingly fragmented by fields and roads," Lewis said. "Species will not move as freely in today's Amazon as they did in previous warm periods, when there was no human influence. Similarly, today's climate change is extremely fast, making comparisons with the past difficult.

"With a clearer understanding of the relative risks to the Amazon forest, we conclude that direct human impacts, such as forest clearance for agriculture or mining, should remain a focus of conservation policy," Lewis said. "We also need more aggressive action to reduce greenhouse gas emissions in order to minimize the risk of drought and fire impacts to secure the future of most Amazon tree species."

Dick and his colleagues used a molecular clock approach to determine the ages of 12 widespread Amazon tree species, including the kapok and the balsa. Then they looked at climatic events that have occurred since those tree species emerged. In general, they inferred that the older the age of the tree species, the warmer the climate it has previously survived.

The researchers determined that nine of the tree species have been around for at least 2.6 million years, seven have been present for at least 5.6 million years, and three have existed in the Amazon for more than 8 million years.

"These are surprisingly old ages," Dick said. "Previous studies have suggested that a majority of Amazon tree species may have originated during the Quaternary Period, from 2.6 million years ago to the present."

Air temperatures across Amazonia in the early Pliocene Epoch (3.6 million to 5 million years ago) were similar to Intergovernmental Panel on Climate Change projections for the region in 2100 using moderate carbon-emission scenarios. Air temperatures in the late Miocene Epoch (5.3 to 11.5 million years ago) were about the same as IPCC projections for the region in 2100 using the highest carbon-emission scenarios.

The 12 tree species used in the study are broadly representative of the Amazon tree flora. Primary forest collection sites were in central Panama, western Ecuador and Amazonian Ecuador. Additional collections were made in Brazil, Peru, French Guiana and Bolivia. Other plant samples were obtained from herbarium specimens.

"The most lasting finding of our study may be the discovery of ancient geographic variation within widespread species, indicating that many rain forest tree species were widely distributed before the major uplift of the northern Andes," said co-author Eldredge Bermingham of the Smithsonian Tropical Research Institute.

To determine the age of each tree species, the researchers extracted and sequenced DNA from plant samples, then looked at the number of genetic mutations contained in those sequences. Using a molecular clock approach and population genetic models, they estimated how long it would take for each of the tree populations to accumulate the observed number of mutations, which provided a minimum age for each species.

"An important caveat is that because we've been in a cold period over the past 2 million years - basically the whole Quaternary Period - some of the trees' adaptations to warmth tolerance may have been lost," Dick said. "Additional research is needed to test whether this has occurred."
-end-
The Ecology and Evolution paper is titled "Neogene origins and implied warmth tolerance of Amazon tree species." In addition to Dick, Bermingham and Lewis, Mark Maslin of University College London is a co-author. Financial support for the research was provided by the Smithsonian Tropical Research Institute, the University of Michigan, the National Science Foundation and the Royal Society.

After 7 p.m. ET on Thursday, Dec. 13, the full paper will be available online at http://onlinelibrary.wiley.com/doi/10.1002/ece3.441/full

University of Michigan

Related Climate Change Articles from Brightsurf:

Are climate scientists being too cautious when linking extreme weather to climate change?
Climate science has focused on avoiding false alarms when linking extreme events to climate change.

Mysterious climate change
New research findings underline the crucial role that sea ice throughout the Southern Ocean played for atmospheric CO2 in times of rapid climate change in the past.

Mapping the path of climate change
Predicting a major transition, such as climate change, is extremely difficult, but the probabilistic framework developed by the authors is the first step in identifying the path between a shift in two environmental states.

Small change for climate change: Time to increase research funding to save the world
A new study shows that there is a huge disproportion in the level of funding for social science research into the greatest challenge in combating global warming -- how to get individuals and societies to overcome ingrained human habits to make the changes necessary to mitigate climate change.

Sub-national 'climate clubs' could offer key to combating climate change
'Climate clubs' offering membership for sub-national states, in addition to just countries, could speed up progress towards a globally harmonized climate change policy, which in turn offers a way to achieve stronger climate policies in all countries.

Review of Chinese atmospheric science research over the past 70 years: Climate and climate change
Over the past 70 years since the foundation of the People's Republic of China, Chinese scientists have made great contributions to various fields in the research of atmospheric sciences, which attracted worldwide attention.

A CERN for climate change
In a Perspective article appearing in this week's Proceedings of the National Academy of Sciences, Tim Palmer (Oxford University), and Bjorn Stevens (Max Planck Society), critically reflect on the present state of Earth system modelling.

Fairy-wrens change breeding habits to cope with climate change
Warmer temperatures linked to climate change are having a big impact on the breeding habits of one of Australia's most recognisable bird species, according to researchers at The Australian National University (ANU).

Believing in climate change doesn't mean you are preparing for climate change, study finds
Notre Dame researchers found that although coastal homeowners may perceive a worsening of climate change-related hazards, these attitudes are largely unrelated to a homeowner's expectations of actual home damage.

Older forests resist change -- climate change, that is
Older forests in eastern North America are less vulnerable to climate change than younger forests, particularly for carbon storage, timber production, and biodiversity, new research finds.

Read More: Climate Change News and Climate Change Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.