Discovered! The new species of Borneo's enigmatic primate with a toxic bite

December 13, 2012

An international team of scientists studying the elusive nocturnal primate the slow loris in the jungles of Borneo have discovered an entirely new species. The team's analysis of the primate's distinctive facial fur markings, published in the American Journal of Primatology, reveals the existence of one entirely new species, while two of species, previously considered as possible sub-species, are being officially recognized as unique.

"Technological advances have improved our knowledge about the diversity of several nocturnal mammals," said Rachel Munds from the University of Missouri Columbia. "Historically many species went unrecognized as they were falsely lumped together as one species. While the number of recognized primate species has doubled in the past 25 years some nocturnal species remain hidden to science."

The slow loris (Nycticebus) is a primate genus closely related to the lemur. Found across South East Asia, from Bangladesh and China's Yunnan province to the island of Borneo, the slow loris is rare amongst primates for having a toxic bite, and is rated as Vulnerable or Endangered on the IUCN Red List.

Slow lorises are recognized by their unique fur coloration on the body and face, yet while traits such as fur patterns are often used to distinguish between species; nocturnal species are cryptic in coloration and have less obvious external differences. The team's research focused on the distinctive colorings of Borneo's slow loris, whose faces have an appearance of a mask, with the eyes being covered by distinct patches and their heads having varying shapes of caps on the top.

Differences among these facemasks resulted in recognition of four species of Bornean and Philippine lorises, N menagensis, N. bancanus, N. borneanus and N. kayan. Of these Nycticebuskayan is a new group unrecognized before as distinct. This new species is found in the central-east highland area of Borneo and is named for a major river flowing in its region, the Kayan.

The recognition of these new species strongly suggests that there is more diversity yet to be discovered in the jungles of Borneo and on the surrounding islands, including the Phillipines. However, much of this territory is threatened by human activity so the possibility that more slow loris species exist in small and fragile ranges raises urgent questions for conservation efforts.

"The pet trade is a serious threat for slow lorises in Indonesia, and recognition of these new species raises issues regarding where to release confiscated Bornean slow lorises, as recognition by non-experts can be difficult," said co-author Professor Nekaris, from Oxford Brookes University.

"In the first study to quantify facial mask differences we have recognized three new species of slow loris, two of which were recognized as subspecies at some point in the past, but are now elevated to species status, and one previously unrecognized group." concluded Ms Munds. "This finding will assist in conservation efforts for these enigmatic primates, although survey work in Borneo suggests the new species are either very difficult to locate or that their numbers may be quite small."
-end-


Wiley

Related Recognition Articles from Brightsurf:

Neural hardware for image recognition in nanoseconds
Usually, artificial intelligence is based on software. Scientists at TU Wien (Vienna) created intelligent hardware, which is much faster.

Facial recognition software has a gender problem
A new study of popular facial analysis services found they misidentified trans men as much as 38% of the time, mischaracterized non-binary individuals 100% of the time and appeared to be based on outdated gender stereotypes.

How neuronal recognition of songbird calls unfolds over time
A novel computational approach sheds new light on the response of neurons in the brain of a songbird when it hears and interprets the meaning of another bird's call.

New findings on human speech recognition at TU Dresden
Neuroscientists at TU Dresden were able to prove that speech recognition in humans begins in the sensory pathways from the ear to the cerebral cortex and not, as previously assumed, exclusively in the cerebral cortex itself.

Skeletal shapes key to rapid recognition of objects
In the blink of an eye, the human visual system can process an object, determining whether it's a cup or a sock within milliseconds, and with seemingly little effort.

A wearable vibration sensor for accurate voice recognition
Professor Kilwon Cho of Chemical Engineering and Professor Yoonyoung Chung of Electronic and Electric Engineering from POSTECH successfully developed a flexible and wearable vibration responsive sensor.

Speech recognition technology is not a solution for poor readers
Could artificial intelligence be a solution for people who cannot read well (functional illiterates) or cannot read at all (complete illiterates)?

Half a face enough for recognition technology
Facial recognition technology works even when only half a face is visible, researchers from the University of Bradford have found.

Widespread brain connections enable face recognition
Remembering a familiar face engages a wider network of brain regions than previously thought, according to a study of healthy men and women published in JNeurosci.

Bacteria use their enemy -- phage -- for 'self-recognition'
Scientists discovered that cells can distinguish themselves from closely related competitors through the use of a virus, and the harboring of phage in bacterial genomes benefits host cells when facing competitors in the environment.

Read More: Recognition News and Recognition Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.