Antarctic neutrino-hunting project IceCube named Breakthrough of the Year by Physics World

December 13, 2013

TORONTO, ON - International high-energy physics research project IceCube has been named the 2013 Breakthrough of the Year by British magazine Physics World. The Antarctic observatory has been selected for making the first observation of cosmic neutrinos, but also for overcoming the many challenges of creating and operating a colossal detector deep under the ice at the South Pole.

"The ability to detect cosmic neutrinos is a remarkable achievement that gives astronomers a completely new way of studying the cosmos," says Hamish Johnston, editor of physicsworld.com. "The judges of the 2013 award were also impressed with the IceCube collaboration's ability to build and operate a huge and extremely sensitive detector in the most remote and inhospitable place on Earth."

Essentially a telescope in the ground, the IceCube Neutrino Observatory was completed in December 2010, after seven years of construction at the South Pole. But the idea of a huge detector buried in the ice was conceived a long time ago And in the 1990s, the AMANDA detector was built as a proof of concept for IceCube. By January 2005, the first sensors of IceCube had already reached 2,450 metres below the Antarctic ice sheet, and a few weeks ago the IceCube Collaboration published the first evidence for a very high-energy astrophysical neutrino flux in Science.

"This is the beginning of a new era for astronomy," says University of Toronto physicist and IceCube collaborator Ken Clark. "This result opens up the ability to use neutrinos to explore our universe. These really are the ideal messenger particles since they can travel vast distances without stopping or slowing."

IceCube principal investigator is Francis Halzen, the Hilldale and Gregory Breit Professor of Physics at the University of Wisconsin-Madison. As he envisioned, the Antarctic ice became the perfect medium to search for very high-energy neutrinos that, after travelling through the universe during millions -- even billions -- of years, haphazardly interact with the nucleus of a molecule of ice.

"I did not imagine that the science would be as exciting as building this detector," says Halzen. "Challenges were many, from deciphering the optical properties of ice that we have never seen, to drilling a hole to 2.5 kilometres in two days, and then repeating 86 times. The success of IceCube builds on the efforts of hundreds of collaborators around the world -- from the design, the deployment in a harsh environment and the AMANDA prototype, to data harvesting and physics analysis."

IceCube is comprised of 5,160 digital optical modules suspended along 86 cables embedded in a cubic kilometre of ice beneath the South Pole. It detects neutrinos through the tiny flashes of blue light, called Cherenkov light, that are produced when neutrinos interact in the ice.
-end-
Physics World will be hosting a Google Hangout on Friday, December 13, at 11a.m. EST with: The Hangout can also be viewed live on the Physics World YouTube channel at http://www.youtube.com/user/physicsworldTV/live

The IceCube Neutrino Observatory was built under a National Science Foundation Major Research Equipment and Facilities Construction grant, with assistance from partner funding agencies around the world. The project continues with support from a Maintenance and Operations grant from the NSF's Division of Polar Programs and Physics Division, along with international support from participating institutions and their funding agencies. UW-Madison is the lead institution and the international collaboration includes 275 physicists and engineers from the U.S., Germany, Sweden, Belgium, Switzerland, Japan, Canada, New Zealand, Australia, U.K., Korea and Denmark.

Note to media: Visit http://icecube.wisc.edu/gallery/press for a multimedia gallery about the IceCube project.

MEDIA CONTACTS:

Ken Clark
Department of Physics
University of Toronto
kclark@physics.utoronto.ca
416-978-4742

Sean Bettam
Communications, Faculty of Arts & Science
University of Toronto
s.bettam@utoronto.ca
416-946-7950

University of Toronto

Related Neutrinos Articles from Brightsurf:

Big answers from tiny particles
A team of physicists led by Kanazawa University demonstrate a theoretical mechanism that would explain the tiny value for the mass of neutrinos and point out that key operators of the mechanism can be probed by current and future experiments.

Physicists cast doubt on neutrino theory
University of Cincinnati physicists, as part of an international research team, are raising doubts about the existence of an exotic subatomic particle that failed to show up in twin experiments.

Exotic neutrinos will be difficult to ferret out
An international team tracking the 'new physics' neutrinos has checked the data of all the relevant experiments associated with neutrino detections against Standard Model extensions proposed by theorists.

Excess neutrinos and missing gamma rays?
A new model points to the coronoe of supermassive black holes at the cores of active galaxies to help explain the excess neutrinos observed by the IceCube Neutrino Observatory.

Where neutrinos come from
Russian astrophysicists have come close to solving the mystery of where high-energy neutrinos come from in space.

Where did the antimatter go? Neutrinos shed promising new light
We live in a world of matter -- because matter overtook antimatter, though they were both created in equal amounts when our universe began.

Strongest evidence yet that neutrinos explain how the universe exists
New data throws more support behind the theory that neutrinos are the reason the universe is dominated by matter.

Why didn't the universe annihilate itself? Neutrinos may hold the answer
New results from an experiment called T2K suggest that physicists are closer than ever before to answering a major mystery: Why didn't the universe annihilate itself in a humungous burst of energy not long after the Big Bang?

T2K insight into the origin of the universe
Lancaster physicists working on the T2K major international experiment in Japan are closing in on the mystery of why there is so much matter in the universe, and so little antimatter.

Radar and ice could help detect an elusive subatomic particle
A new study published today in the journal Physical Review Letters shows, for the first time, an experiment that could detect a class of ultra-high-energy neutrinos using radar echoes.

Read More: Neutrinos News and Neutrinos Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.