A stop sign for cancer

December 13, 2013

Proteins in cells communicate like relay runners in a competition. The sticks that are transferred between the runners are the "signals". These signals are passed within the cell from one protein to another and ensure cell growth and survival. In cancer cells it is interesting approach to block this information cascade and thereby block the proliferation of cancer cells.

Essential for the signalling in cancer cells is the protein STAT5. It is known that STAT5 is overstimulated in many cancers. It forwards signals in an uncontrolled manner and is ultimately responsible for the excessive cell division of cancer cells. In mice that suffer from leukemia, it has already been shown, that the elimination of STAT5 makes the animals gain health again. Therefore, the importance of the protein in cancer is obvious. The researchers now want to apply this information on cancer therapy in humans.

Slowing down STAT5

The research team led by Veronika Sexl from the Institute of Pharmacology and Toxicology at the Vetmeduni Vienna took a closer look at STAT5. Using leukemia as a model disease, the team looked for therapeutically exploitable attack points on the protein and they actually identified such. The shutdown of two distinct signals of STAT5 led to a significantly later progression of leukemia in mice compared to animals that harboured the unmodified STAT5. One of these two therapeutically relevant sites is of particular importance: "The shutdown of the site Serin779 on STAT5 makes it impossible for STAT5 to fulfil its role as a relay runner and migrate into the nucleus. Thus, the effect of STAT5 is inhibited", says Hölbl-Kovacic, one of the lead authors of the pioneering publication.

Interrupting the relay race at several points

In a large-scale screening, the co-lead author Angelika Berger identified those relay runners that act before Serin779, the so-called PAK (p21 activated kinase). This means that PAK has control over STAT5 and activates it. By inhibiting PAK, STAT5 is turned off and disconnected from the relay race. The cancer researchers also found that PAK is still active, when cancer cells have already been treated with the current standard therapeutic agent Imatinib. This means that a potential new drug that acts on PAK could be well used in combination with Imatinib. Such a strategy would be of great importance in patients that no longer respond to Imatinib and are "therapy-resistant". PAK kinases thus represent a new therapeutic target, which is independent of previous treatment methods.

STAT5 has a role in many cancers

Angelika Berger explains: "So far, the PAK kinases have received relatively little attention in cancer therapy. However, they could be beneficial for a wide range of applications. All types of cancers, in which STAT5 plays a role, could be treated by this system in a new way. Those are the leukemias but also a number of other diseases such as breast cancer or prostate cancer."
-end-
The article „PAK-dependent STAT5 serine phosphorylation is required for BCR-ABL-induced leukemogenesis", by Angelika Berger, Andrea Hölbl-Kovacic, Jérôme Bourgeais, Lukas Höfling, Wolfgang Warsch, Eva Grundschober, Iris Z. Uras, Ingeborg Menzl, Eva Maria Putz, Gregor Hörmann, Christian Schuster, Sabine Fajmann, Ernestine Leitner, Stefan Kubicek, Richard Moriggl, Fabrice Gouilleux und Veronika Sexl wurde im Journal Leukemia veröffentlicht. doi: 10.1038/leu.2013.351 http://www.nature.com/leu/journal/vaop/naam/abs/leu2013351a.html

About the University of Veterinary Medicine, Vienna

The University of Veterinary Medicine, Vienna is the only academic and research institution in Austria that focuses on the veterinary sciences. About 1200 employees and 2300 students work on the campus in the north of Vienna, which also houses the animal hospital and various spin-off-companies. http://www.vetmeduni.ac.at

Scientific Contact:

Andrea Hoelbl-Kovacic, PhD
Institute of Pharmacology and Toxicology
University of Veterinary Medicine Vienna (Vetmeduni Vienna)
T +43 1 25077-2903
andrea.hoelbl@vetmeduni.ac.at

Released by:

Susanna Kautschitsch
Science Communication / Public Relations
University of Veterinary Medicine Vienna (Vetmeduni Vienna)
T +43 1 25077-1153
susanna.kautschitsch@vetmeduni.ac.at

University of Veterinary Medicine -- Vienna

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.