Study: Warming global temperatures may not affect carbon stored deep in northern peatlands

December 13, 2016

TALLAHASSEE, Fla. -- Deep stores of carbon in northern peatlands may be safe from rising temperatures, according to a team of researchers from several U.S.-based institutions.

And that is good news for now, the researchers said.

Florida State University research scientist Rachel Wilson and University of Oregon graduate student Anya Hopple are the first authors on a new study published today in Nature Communications. The study details experiments suggesting that carbon stored in peat -- a highly organic material found in marsh or damp regions -- may not succumb to the Earth's warming as easily as scientists thought.

That means if these northern peatlands -- found in the upper half of the northern hemisphere -- remain flooded, a substantial amount of carbon will not be released into the atmosphere.

"We do see some breakdown of peat on the surface, but not below 2 feet deep, where the bulk of the carbon is stored," Wilson said.

The study is part of a long-term look at how carbon stored in peat will respond to climate and environmental change. The team of researchers, led by Paul Hanson of the Oak Ridge National Laboratory, includes scientists from FSU, University of Oregon, Georgia Institute of Technology, the U.S. Department of Agriculture-Forest Service, Chapman University, Lawrence Livermore National Laboratory, Pacific Northwest National Laboratory and Oak Ridge National Laboratory.

Researchers ran four different temperature simulations -- increasing the temperature of the peat by 2.25 degrees Celsius, 4.5 degrees Celsius, 6.25 degrees Celsius and 9 degrees Celsius -- to see how it would respond to increased heat.

They found that the surface peat did emit more methane gas when warmed, but the deep peat did not break down and did not start emitting additional methane or carbon dioxide.

"If the release of greenhouse gases is not enhanced by temperature of the deep peat, that's great news because that means that if all other things remain as they are, the deep peat carbon remains in the soil," said Joel Kostka, professor of microbiology at Georgia Institute of Technology.

The Earth's soils contain 1,550 billion tons of organic carbon, and 500 billion tons of this carbon is stored in northern peatlands around the world. This quantity is roughly the same amount as carbon in the atmosphere.

Scientists have been anxious to learn how these northern peatlands will respond to warming because a tremendous amount of carbon could be released into the atmosphere.

Researchers worked at the Oak Ridge National Laboratory's experimental site known as SPRUCE in northern Minnesota to examine both surface peat and peat up to 6 feet deep. The majority of the carbon is stored deeper in the ground.

Large environmental chambers were constructed by the Oak Ridge team to enclose portions of the peatlands. Within these chambers, scientists simulated climate change effects such as higher temperatures and elevated carbon dioxide levels. They also took some of the deep peat back to their labs to heat in additional studies.

While scientists said they were surprised by the results, they also cautioned that this came only after one year of warming.

"There are the necessary caveats that this was only for one year, and the experiment is planned to run for a decade, and other ecosystem feedbacks may become important in greenhouse gas emissions," said Scott Bridgham, director of the Institute of Ecology and Evolution at University of Oregon and Hopple's adviser.

In the future, scientists also plan to look at how these peatlands respond to heightened carbon dioxide levels combined with the temperature increases.

"In the future, we'll be warmer, but we'll also have more carbon dioxide in the atmosphere, so we need to understand how these deep stores of peat, which have all this carbon, respond to these conditions," said Jeff Chanton, professor of oceanography at Florida State University.
This work was funded by the U.S. Department of Energy.

Florida State University

Related Carbon Articles from Brightsurf:

The biggest trees capture the most carbon: Large trees dominate carbon storage in forests
A recent study examining carbon storage in Pacific Northwest forests demonstrated that although large-diameter trees (21 inches) only comprised 3% of total stems, they accounted for 42% of the total aboveground carbon storage.

Carbon storage from the lab
Researchers at the University of Freiburg established the world's largest collection of moss species for the peat industry and science

Carbon-carbon covalent bonds far more flexible than presumed
A Hokkaido University research group has successfully demonstrated that carbon-carbon (C-C) covalent bonds expand and contract flexibly in response to light and heat.

Metal wires of carbon complete toolbox for carbon-based computers
Carbon-based computers have the potential to be a lot faster and much more energy efficient than silicon-based computers, but 2D graphene and carbon nanotubes have proved challenging to turn into the elements needed to construct transistor circuits.

Cascades with carbon dioxide
Carbon dioxide (CO(2)) is not just an undesirable greenhouse gas, it is also an interesting source of raw materials that are valuable and can be recycled sustainably.

Two-dimensional carbon networks
Lithium-ion batteries usually contain graphitic carbons as anode materials. Scientists have investigated the carbonic nanoweb graphdiyne as a novel two-dimensional carbon network for its suitability in battery applications.

Can wood construction transform cities from carbon source to carbon vault?
A new study by researchers and architects at Yale and the Potsdam Institute for Climate Impact Research predicts that a transition to timber-based wood products in the construction of new housing, buildings, and infrastructure would not only offset enormous amounts of carbon emissions related to concrete and steel production -- it could turn the world's cities into a vast carbon sink.

Investigation of oceanic 'black carbon' uncovers mystery in global carbon cycle
An unexpected finding published today in Nature Communications challenges a long-held assumption about the origin of oceanic black coal, and introduces a tantalizing new mystery: If oceanic black carbon is significantly different from the black carbon found in rivers, where did it come from?

First fully rechargeable carbon dioxide battery with carbon neutrality
Researchers at the University of Illinois at Chicago are the first to show that lithium-carbon dioxide batteries can be designed to operate in a fully rechargeable manner, and they have successfully tested a lithium-carbon dioxide battery prototype running up to 500 consecutive cycles of charge/recharge processes.

How and when was carbon distributed in the Earth?
A magma ocean existing during the core formation is thought to have been highly depleted in carbon due to its high-siderophile (iron loving) behavior.

Read More: Carbon News and Carbon Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to