Nav: Home

Newly revealed amino acid function could be used to boost antioxidant levels

December 13, 2016

A Japanese research team has become the first in the world to discover that 2-aminobutyric acid (2-AB) is closely involved in the metabolic regulation of the antioxidant glutathione, and that it can effectively raise levels of glutathione in the body when ingested. The findings were published in the online version of Scientific Reports on November 9.

Glutathione, an antioxidant with antidotal properties, plays an important role in keeping us healthy. This finding could contribute to the development of new ways to prevent, diagnose and treat various oxidative stress-related conditions including Alzheimer's, aging, cancer, lifestyle-related diseases, hardened arteries, and organ damage caused by medicines and toxins.

The team was led by Kobe University Graduate School of Medicine, Division of Evidence-Based Laboratory Medicine Assistant Professor IRINO Yasuhiro and Associate Professor TOH Ryuji, in collaboration with Professor HIRATA Ken-ichi (Kobe University, Division of Cardiovascular Medicine) and Professor MIYATA Okiko (Kobe Pharmaceutical University, Medicinal Chemistry Laboratory)

Glutathione is a major antioxidant component within cells, and keeps our bodies healthy by contributing to the detoxification of foreign substances. Monitoring glutathione metabolism in the body can help with early diagnosis of illness, as glutathione is consumed when bodies experience oxidative stress. However, glutathione concentration in the blood is 100- to 1000-fold lower than levels within cells, making it hard to accurately measure. Our bodies also compensate for the depletion of glutathione under stress, so circulating levels will not necessarily decrease during illness. This makes it difficult to accurately monitor the metabolism of glutathione just by measuring its levels in the blood.

Increasing levels of glutathione in the body could help to prevent and treat a variety of conditions which involve oxidative stress and organ damage caused by toxins. However, simply ingesting glutathione does not efficiently increase glutathione levels in the body.

2-aminobutyric acid (2-AB) has been reported as a basic component of ophthalmic acid, which is produced when glutathione is synthesized. Until now, the metabolism and physiological effects of 2-AB itself were unknown. The group investigated whether 2-AB could be a marker for glutathione dynamics, and whether it could be used to modulate glutathione homeostasis.

Searching for leads to develop new diagnoses and treatment to combat heart failure, the group started by comprehensively analyzing metabolites in the bloodstreams of atrial septal defect patients using a gas chromatography mass spectrometer. Results showed that levels of 2-AB were higher in these patients than in healthy subjects, and 2-AB levels decreased after the closure of atrial septal defect. Then, the group clarified for the first time that 2-AB is a byproduct of cysteine, one of the constituent amino acids of glutathione (figure 1), and revealed that activation of glutathione synthetic pathway under oxidative damage led to 2-AB accumulation. Because blood concentration of 2-AB reflects the metabolism of glutathione within the body, 2-AB could potentially be used as a new biomarker for early detection of oxidative stress.

Intriguingly, the group also found that 2-AB promotes glutathione synthesis. The anticancer drug doxorubicin causes heart damage via oxidative stress as an adverse effect. They discovered that when taken orally, 2-AB increases the concentration of glutathione in the bloodstream and the heart, lessening the heart damage caused by doxorubicin (figure 2).

This research found that as well as being a biomarker, 2-AB itself is an antioxidant that can be used to effectively increase glutathione in the body (patent pending). 2-AB is a naturally-occurring amino acid that can be found in everyday food products. Future research will examine which foods contain high levels of 2-AB, the recommended level to ingest, whether it can be used as an antioxidant for other organs, and the development of medicines and functional food for clinical use.
-end-


Kobe University

Related Stress Articles:

Captive meerkats at risk of stress
Small groups of meerkats -- such as those commonly seen in zoos and safari parks -- are at greater risk of chronic stress, new research suggests.
Stress may protect -- at least in bacteria
Antibiotics harm bacteria and stress them. Trimethoprim, an antibiotic, inhibits the growth of the bacterium Escherichia coli and induces a stress response.
Some veggies each day keeps the stress blues away
Eating three to four servings of vegetables daily is associated with a lower incidence of psychological stress, new research by University of Sydney scholars reveals.
Prebiotics may help to cope with stress
Probiotics are well known to benefit digestive health, but prebiotics are less well understood.
Building stress-resistant memories
Though it's widely assumed that stress zaps a person's ability to recall memory, it doesn't have that effect when memory is tested immediately after a taxing event, and when subjects have engaged in a highly effective learning technique, a new study reports.
More Stress News and Stress Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Teaching For Better Humans
More than test scores or good grades — what do kids need to prepare them for the future? This hour, guest host Manoush Zomorodi and TED speakers explore how to help children grow into better humans, in and out of the classroom. Guests include educators Olympia Della Flora and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#535 Superior
Apologies for the delay getting this week's episode out! A technical glitch slowed us down, but all is once again well. This week, we look at the often troubling intertwining of science and race: its long history, its ability to persist even during periods of disrepute, and the current forms it takes as it resurfaces, leveraging the internet and nationalism to buoy itself. We speak with Angela Saini, independent journalist and author of the new book "Superior: The Return of Race Science", about where race science went and how it's coming back.