Stimulator bypasses spine injury, helps patients move hands

December 13, 2016

Los Angeles, CA. - Doctors at Ronald Reagan UCLA Medical Center have implanted a spinal stimulator that is showing early promise in returning hand strength and movement to a California man who broke his neck in a dirt-biking accident five years ago.

Brian Gomez, 28, became one of the world's first patients to undergo surgery for the experimental device in June 2016.

UCLA scientists positioned the 32-electrode stimulator below the site of Gomez's spinal-cord injury, near the C-5 vertebrae in the middle of his neck. That's the area most commonly associated with quadriplegia, or loss of function and feeling in all four limbs.

"The spinal cord contains alternate pathways that it can use to bypass the injury and get messages from the brain to the limbs," said Daniel Lu, M.D., Ph.D. , an associate professor of neurosurgery and director of UCLA's neuroplasticity and repair laboratory and the neuromotor recovery and rehabilitation center. "Electrical stimulation trains the spinal cord to find and use these pathways."

While other devices have shown promise recently in treating paralysis, these approaches involved animals or relied on robotic arms. This approach is unique because the device is implanted in the spine instead of the brain, and is designed to boost patients' abilities to move their own hands.

Lu likened the approach to a commute on a busy freeway. "If there is an accident on the freeway, traffic comes to a standstill, but there are any number of side streets you can use to detour the accident and get where you are going," he said. "It's the same with the spinal cord."

In addition to the stimulator, doctors implant a small battery pack and processing unit under the skin of the patient's lower back. Small enough to fit in the palm of your hand, the implant is paired with a remote control that patients and doctors use to regulate the frequency and intensity of the stimulation.

"We can dial up or dial down different parameters and program in the stimulator certain algorithms to activate specific electrodes," said Lu. "It is an ongoing process that retrains the spinal cord and, over time, allows patients to strengthen their grip and regain mobility in their hands."

The UCLA team performed the world's first implant surgeries of this kind on two cervical spinal-cord injury patients prior to Gomez. Lu and his colleagues saw an increase in finger mobility and grip strength of up to 300 percent.

The current study is funded by the National Institute of Biomedical Imaging and Bioengineering, part of the National Institutes of Health. Lu is working with UCLA neuroscientist Reggie Edgerton, Ph.D . , to build upon the success of their previous findings in patients with lumbar spinal-cord injuries.

"We'd used electrical stimulation to recover paraplegic patients' abilities to stand and move their legs on their own following injury to the lower spine," said Edgerton, a distinguished professor of integrative biology/physiology and neurosurgery at UCLA's David Geffen School of Medicine and College of Letters and Science. "There was considerable skepticism in the field that we could use a similar approach to regain hand function in quadriplegic patients with injury to the upper spine. Brian's strong response to the implant has been very exciting."

"It's making a huge difference for me," said Gomez, who owns a coffee-roasting business in his hometown of San Dimas, California.

"I use an industrial roaster that heats up to 450 degrees and just a few months ago, I reached up to pull a lever to empty a batch of beans after they'd finished roasting," said Gomez. "But because I didn't have the arm or core strength, I burned myself," he said pointing to a scar on his forearm. "That doesn't happen anymore because of the strength and dexterity I've developed."

Gomez's improvements are especially encouraging given the five years that passed between his injury and surgery. People who suffer spinal-cord injuries usually have a window of only a few months to get the rehabilitation they need in order to maintain at least partial use of their hands. Meaningful improvement is rare more than a year after injury.

"Even though he was injured in 2011, in many ways Brian is a perfect candidate for this experimental treatment. He still has head-to-toe sensation, so he can give us feedback as we fine-tune the stimulator. And he is such a positive and motivated young man," said Lu.

Several times a week, Gomez returns to a laboratory at UCLA, where a team of scientists put him through rehabilitation exercises and continue to fine-tune the stimulator. "It takes a lot of time and commitment to do this, but I'm determined," said Gomez. "Things are about to change for the better, so I'm excited about what's to come."

The UCLA team's goal is not to fully restore hand function, but to improve it enough to allow patients to perform everyday tasks -- still a remarkable achievement considering the length of time since their injuries. As the technology develops, patients might be able to expect further improvements.

Researchers evaluate hand strength by measuring a unit known as a newton of force.

"A normal hand is able to impart about 100 to 200 newtons of force, but after an accident, that often drops to only 1 or 2 newtons of force," said Lu. "Our goal is to get these patients back to the 20 to 30 range. That will allow them to do everyday tasks and will make a huge difference in the quality of their lives."

Tasks like tying their shoes and brushing their teeth. Or, in Brian Gomez's case, holding and sipping a cup of coffee that he roasted and brewed himself.
-end-


MediaSource

Related Spinal Cord Articles from Brightsurf:

Stem cells can help repair spinal cord after injury
Spinal cord injury often leads to permanent functional impairment. In a new study published in the journal Science researchers at Karolinska Institutet in Sweden show that it is possible to stimulate stem cells in the mouse spinal cord to form large amounts of new oligodendrocytes, cells that are essential to the ability of neurons to transmit signals, and thus to help repair the spinal cord after injury.

Improving treatment of spinal cord injuries
A group led by UC Riverside bioengineering professor Victor G.

Spinal cord gives bio-bots walking rhythm
Miniature biological robots are making greater strides than ever, thanks to the spinal cord directing their steps.

Co-delivery of IL-10 and NT-3 to enhance spinal cord injury repair
Spinal cord injury (SCI) creates a complex microenvironment that is not conducive to repair; growth factors are in short supply, whereas factors that inhibit regeneration are plentiful.

Locomotor engine in the spinal cord revealed
Researchers at Karolinska Institutet in Sweden have revealed a new principle of organization which explains how locomotion is coordinated in vertebrates akin to an engine with three gears.

Neurological signals from the spinal cord surprise scientists
With a study of the network between nerve and muscle cells in turtles, researchers from the University of Copenhagen have gained new insight into the way in which movements are generated and maintained.

An 'EpiPen' for spinal cord injuries
An injection of nanoparticles can prevent the body's immune system from overreacting to trauma, potentially preventing some spinal cord injuries from resulting in paralysis.

From spinal cord injury to recovery
Spinal cord injury disconnects communication between the brain and the spinal cord, disrupting control over part of the body.

Transplanting adult spinal cord tissues: A new strategy of repair spinal cord injury
Spinal cord injury repair is one of the most challenging medical problems, and no effective therapeutic methods has been developed.

Gene medication to help treat spinal cord injuries
The two-gene medication has been proven to recover motor functions in rats.

Read More: Spinal Cord News and Spinal Cord Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.