Nav: Home

Could co-infection with other viruses affect the survival of those with Ebola virus?

December 13, 2016

Ebola virus is one of a variety of viruses that causes a disease that comes under the general heading of viral haemorrhagic fever (VHF). Since the Ebola outbreak in West Africa much has been done to further understand the biology of the Ebola virus. Yet a number of people in West Africa displayed VHF-like symptoms while testing negative for Ebola.

What is it that caused some people to display VHF symptoms without having the Ebola virus, and what role might that have in worsening the clinical outcome and survival rates of those infected with Ebola? What other pathogens may have been lingering in the background and how may these have affected the patient's immune response to fight infection?

These are the questions to be addressed by a research study carried out at Public Health England and Plymouth University School of Biomedical and Healthcare Sciences, with support for a PhD post from Public Health England.

VHFs are adept at disabling the host immune system, and they do this by attacking and manipulating the cells in the body which manage the antiviral response. There is a wealth of understanding about how this works but the role of non-VHF pathogens co-infecting patients and how this affects the survival of people with the condition remains largely unknown.

The research team will analyse viromes, the genome of viruses, in blood samples from 100 patients admitted to three Ebola Treatment Centres in Sierra Leone between 2014 and 2015. They will focus both on patients who tested negative for the Ebola virus but who displayed VHF-like clinical symptoms and on patients who exhibited VHF symptoms and tested positive for Ebola virus.

They will aim to ascertain which pathogens may have contributed to these symptoms. They will also test the effects on the immune system through infecting healthy human blood cells with any pathogens identified.

It is hoped that the results of this study could be used for the improved diagnosis of other VHFs, such as Marburg virus, Lassa virus, Yellow Fever virus, Rift Valley Fever virus and Dengue virus.

The study will also identify new and re-emerging pathogens which will benefit the diagnosis and treatment of VHFs, should future outbreaks arise.

The study is led by Professor Christopher H. Logue at Public Health England and Dr. Gyorgy Fejer, Lecturer in Environmental Pathogens at Plymouth University School of Biomedical and Healthcare Sciences.

Professor Logue said: "The 2013-2015 Ebola outbreak in West Africa galvanised the research community into better understanding the virus, the illness it causes, and finding ways in which to detect and combat it"

He continued " What is new about our research is by combining metagenomic sequencing and immunology strategies, we seek to further understand the effect that other circulating pathogens may have had in patients with VHF-like symptoms but without the Ebola virus. Of equal importance, we will be able see what pathogens the patients testing positive for Ebola may have been co-infected with and the roles these had on patient clinical outcome."
-end-


University of Plymouth

Related Immune System Articles:

The immune system may explain skepticism towards immigrants
There is a strong correlation between our fear of infection and our skepticism towards immigrants.
New insights on how pathogens escape the immune system
The bacterium Salmonella enterica causes gastroenteritis in humans and is one of the leading causes of food-borne infectious diseases.
Understanding how HIV evades the immune system
Monash University (Australia) and Cardiff University (UK) researchers have come a step further in understanding how the human immunodeficiency virus (HIV) evades the immune system.
Carbs during workouts help immune system recovery
Eating carbohydrates during intense exercise helps to minimise exercise-induced immune disturbances and can aid the body's recovery, QUT research has found.
A new model for activation of the immune system
By studying a large protein (the C1 protein) with X-rays and electron microscopy, researchers from Aarhus University in Denmark have established a new model for how an important part of the innate immune system is activated.
Guards of the human immune system unraveled
Dendritic cells represent an important component of the immune system: they recognize and engulf invaders, which subsequently triggers a pathogen-specific immune response.
How our immune system targets TB
Researchers have seen, for the very first time, how the human immune system recognizes tuberculosis (TB).
How a fungus inhibits the immune system of plants
A newly discovered protein from a fungus is able to suppress the innate immune system of plants.
A new view of the immune system
Pathogen epitopes are fragments of bacterial or viral proteins. Nearly a third of all existing human epitopes consist of two different fragments.
TB tricks the body's immune system to allow it to spread
Tuberculosis tricks the immune system into attacking the body's lung tissue so the bacteria are allowed to spread to other people, new research from the University of Southampton suggests.

Related Immune System Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#530 Why Aren't We Dead Yet?
We only notice our immune systems when they aren't working properly, or when they're under attack. How does our immune system understand what bits of us are us, and what bits are invading germs and viruses? How different are human immune systems from the immune systems of other creatures? And is the immune system so often the target of sketchy medical advice? Those questions and more, this week in our conversation with author Idan Ben-Barak about his book "Why Aren't We Dead Yet?: The Survivor’s Guide to the Immune System".