Nav: Home

Residual strain despite mega earthquake

December 13, 2017

On 22 May 1960, an earthquake shook the southern Chilean continental margin on a length of about 1,000 kilometers. Estimates suggest that around 1,600 people died as a direct result of the quake and the following tsunami, leaving around two million people homeless. With a strength of 9.5 on the moment magnitude scale, the Valdivia earthquake from 1960 still ranks number one on the list of strongest earthquakes ever measured.

More than half a century later, on 25 December 2016, the earth was trembling around the southern Chilean island of Chiloé. With a strength of 7,5 Mw this event can be described as rather moderate by Chilean standards. But the fact that it broke the same section of the Chilean subduction zone as the 1960 earthquake is quite interesting for scientists. As researchers from the GEOMAR Helmholtz Centre for Ocean Research Kiel and the Universidad de Chile have now published in the journal Geophysical Journal International, part of the energy of the 2016 quake apparently dates back to before 1960. "So, the 1960 quake, despite its immense strength, must have left some strain in the underground, " says Dr. Dietrich Lange, geophysicist at GEOMAR and lead author of the study.

To understand why Chile is being hit so frequently by heavy earthquakes, one has to look at the seabed off the coast. It belongs to the so-called Nazca plate, a tectonic plate, which moves eastwards with a rate of 6.6 cm per year. Off the Chilean coast it collides with the South American plate and is submerged beneath it. In this process, strains build up between the plates - until they break and the earth trembles.

During such an earthquake, the strain is released within minutes. During the 1960 earthquake for example, the plates shifted by more than 30 meters against each other. As a result, landmasses were lifted up or down several meters with a fundamental change of Chilean landscapes and coastline. "The scale of the slip also gives information about the accumulated energy between the two plates," explains Dr. Lange.

From the time interval (56 years), the known speed of the Nazca plate, and further knowledge of the subduction zone, the German-Chilean team has calculated the accumulated energy and thus the theoretical slip of the 2016 earthquake to about 3.4 meters. But the analysis of seismic data and GPS surveys showed a slip of more than 4.5 m. "The strain must have had accumulated for more than 56 years. It is older than the last earthquake in the same region," says Dr. Lange.

Similar results have recently been obtained in another subduction zones. Along with them, the new study suggests that for risk assessment in earthquake-prone areas, not just a single seismic cycle from one earthquake to the next should be considered. "The energy can be greater than that resulting from the usual calculations, which can, for example, have an impact on recommendations for earthquake-proof construction," says Dr. Lange.
-end-


Helmholtz Centre for Ocean Research Kiel (GEOMAR)

Related Earthquake Articles:

Earthquake symmetry
A recent study investigated around 100,000 localized seismic events to search for patterns in the data.
Crowdsourcing speeds up earthquake monitoring
Data produced by Internet users can help to speed up the detection of earthquakes.
Geophysics: A surprising, cascading earthquake
The Kaikoura earthquake in New Zealand in 2016 caused widespread damage.
How fluid viscosity affects earthquake intensity
A young researcher at EPFL has demonstrated that the viscosity of fluids present in faults has a direct effect on the intensity of earthquakes.
Earthquake in super slo-mo
A big earthquake occurred south of Istanbul in the summer of 2016, but it was so slow that nobody noticed.
A milestone for forecasting earthquake hazards
In a new study in Science Advances, researchers report that their physics-based model of California earthquake hazards replicated estimates from the state's leading statistical model.
Mw 5.4 Pohang earthquake tied to geothermal activity?
The Mw 5.4 Pohang earthquake that occurred near a geothermal site in South Korea last year was likely triggered by fluid injection at the geothermal plant, two separate reports conclude.
Seismologists introduce new measure of earthquake ruptures
A team of seismologists has developed a new measurement of seismic energy release that can be applied to large earthquakes.
Residual strain despite mega earthquake
On Christmas Day 2016, the earth trembled in southern Chile.
The losses that come after the earthquake: Devastating and costly
The study, titled, 'Losses Associated with Secondary Effects in Earthquakes,' published by Frontiers in Built Environmen, looks at the devastation resulting from secondary disasters, such as tsunamis, liquefaction of sediments, fires, landslides, and flooding that occurred during 100 key earthquakes that occurred from 1900 to the present.
More Earthquake News and Earthquake Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#543 Give a Nerd a Gift
Yup, you guessed it... it's Science for the People's annual holiday episode that helps you figure out what sciency books and gifts to get that special nerd on your list. Or maybe you're looking to build up your reading list for the holiday break and a geeky Christmas sweater to wear to an upcoming party. Returning are pop-science power-readers John Dupuis and Joanne Manaster to dish on the best science books they read this past year. And Rachelle Saunders and Bethany Brookshire squee in delight over some truly delightful science-themed non-book objects for those whose bookshelves are already full. Since...
Now Playing: Radiolab

An Announcement from Radiolab