Climate conditions affect solar cell performance more than expected

December 13, 2017

Massachusetts Institute of Technology researchers can now predict how much energy solar cells will produce at any location worldwide. Surprisingly, they identified that two types of solar cells (silicon and cadmium telluride) can vary in energy output by 5% or more in tropical regions, where most of the emerging solar cell markets are located. This gap occurs because solar energy can shift depending on local temperature and water in the atmosphere. Their work, appearing December 13 in the journal Joule and developed into an open-source tool, emphasizes that solar products may behave differently depending on their environment.

"We've explored the convergence of two things, location and technology, to come up with a framework for predicting solar panel energy output," says senior author Tonio Buonassisi, an Associate Professor of Mechanical Engineering at MIT. "If you have a new solar technology, you can see where your technology might be able to outcompete commercial silicon solar cells."

To demonstrate how their framework works, the researchers combined real data from solar cells located in the United States (Perrysburg, Ohio) and Singapore with 1 year of satellite weather data to map where solar cells would work best outdoors. With this data, they analyzed two solar cell materials: silicon (commonly used in solar cells) and cadmium telluride (thin-film competitor material).

The researchers found that the cadmium telluride solar cells produced up to 5% more energy than silicon ones in the hot, humid Singaporean location. Similar trends can be expected for other materials with a higher electronic band gap like gallium arsenide or metal-halide perovskites.

"Tools used by developers to predict energy yields of solar panels and plan solar systems are often expensive and inaccurate," says first author Ian Marius Peters, a research associate at the MIT Photovoltaics Research Laboratory (@MITPVLab). "They're inaccurate because they were developed for temperate climates like the United States, Europe, and Japan."

Interested users will be able to download the online tool the researchers developed, and then plug in their own locations and performance information for different types of solar cells. This allows users to determine either where their solar cell would work best or what type of solar cell they should use in their location. This is a different way of thinking about solar cells, which are normally described in terms of how much energy they can produce in lab conditions, rather than in use in a specific environment.

"The takeaway is you should decide what type of solar cell you're using based on the type of climate in your area," says Peters. "There are reasons to use silicon, and there are reasons to use other technologies, like cadmium telluride. Outdoor conditions can become one of the most important factors for determining future research."
-end-
This work was supported by the U.S. Department of Energy and Singapore's National Research Foundation.

Joule, Peters et al.: "Global Prediction of Photovoltaic Field Performance Differences - A Study Using Open-Source Satellite Data" http://www.cell.com/joule/fulltext/S2542-4351(17)30183-6

Joule (@Joule_CP) published monthly by Cell Press, is a new home for outstanding and insightful research, analysis, and ideas addressing the need for more sustainable energy. A sister journal to Cell, Joule spans all scales of energy research, from fundamental laboratory research into energy conversion and storage up to impactful analysis at the global level. Visit: http://www.cell.com/joule. To receive Cell Press media alerts, contact press@cell.com.

Cell Press

Related Solar Cells Articles from Brightsurf:

Solar cells of the future
Organic solar cells are cheaper to produce and more flexible than their counterparts made of crystalline silicon, but do not offer the same level of efficiency or stability.

A blast of gas for better solar cells
Treating silicon with carbon dioxide gas in plasma processing brings simplicity and control to a key step for making solar cells.

Record efficiency for printed solar cells
A new study reports the highest efficiency ever recorded for full roll-to-roll printed perovskite solar cells.

Next gen solar cells perform better when there's a camera around
A literal ''trick of the light'' can detect imperfections in next-gen solar cells, boosting their efficiency to match that of existing silicon-based versions, researchers have found.

On the trail of organic solar cells' efficiency
Scientists at TU Dresden and Hasselt University in Belgium investigated the physical causes that limit the efficiency of novel solar cells based on organic molecular materials.

Exciting tweaks for organic solar cells
A molecular tweak has improved organic solar cell performance, bringing us closer to cheaper, efficient, and more easily manufactured photovoltaics.

For cheaper solar cells, thinner really is better
Researchers at MIT and at the National Renewable Energy Laboratory (NREL) have outlined a pathway to slashing costs further, this time by slimming down the silicon cells themselves.

Flexible thinking on silicon solar cells
Combining silicon with a highly elastic polymer backing produces solar cells that have record-breaking stretchability and high efficiency.

Perovskite solar cells get an upgrade
Rice University materials scientists find inorganic compounds quench defects in perovskite-based solar cells and expand their tolerance of light, humidity and heat.

Can solar technology kill cancer cells?
Michigan State University scientists have revealed a new way to detect and attack cancer cells using technology traditionally reserved for solar power.

Read More: Solar Cells News and Solar Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.