Nav: Home

Gold recycling

December 13, 2018

"Urban mining", the recycling of precious metals from electronic gadgets, becomes ever more important, although processes that are both efficient and environmentally benign are still scarce. An international team of scientists has now looked deeper into gold dissolution, in particular, how organic thiol-containing compounds help dissolve elemental gold. Their study published in the journal Angewandte Chemie proposes selective, fast, and convenient thiol-assisted gold leaching processes.

The traditional way of recycling gold "waste" is melting: dental gold and jewelry can be recycled close to 100 %. Recycling of precious metals in smartphones, computers, and other electronic gadgets is much harder, and the recovery quote is still low. Despite their abundance in electronic devices, their relative content is still too low to allow for really economical urban mining.

The traditional mining method for gold is hydrometallurgical cyanide leaching, which produces a vast amount of hazardous waste while being relatively unselective. More recent concepts rely on the complexation of gold in organic solutions because forms soluble complexes with sulfur-containing reagents. However, the processes must be feasible on a large scale and still avoid toxic or hazardous compounds. Now, Timo Repo at the University of Helsinki, Finland, and his colleagues have looked deeper into the details of selective gold extraction in organic solution. They propose an efficient gold recovery method from electronic waste with pyridinethiols and hydrogen peroxide as reagents, the chemical dimethyl formamide as organic solvent, and, optionally, elemental sulfur to reduce the reagent load.

Pyridinethiol is pyridine, a nitrogen-containing aromatic ring, with a thiol group, SH, added to its ring. The reagent not only binds elemental gold to form soluble complexes, but the complex has also a favorable linear structure formed by two pyridinethiol molecules on either side of the gold atom. Upon oxidation, it transforms to a stable cationic gold-containing product in organic solution. This complex formation with two ligands is a specialty of gold, favoring the energetics of dissolution and oxidation. Accordingly, the authors reported nearly quantitative dissolution of gold from powder, film, or electronic boards after 20 minutes extraction time.

But how can gold dissolution be distinguished from that of other precious metals? In contrast to gold having a one-electron oxidation, platinum and palladium require two-electron oxidations and thus are not accessible with this method. In contrast, both copper and silver form complexes with pyridinethiols, although not as effective as gold. Therefore, before dissolving the gold from the "gold finger" region in a printed circuit board, the scientists first extracted copper and silver with ammonia and sulfate-containing solutions, which are established methods.

Looking into the exact mechanism of thiol-assisted gold dissolution, the scientists discovered a surprisingly high variety of sulfur-containing side products. Some of them seemed to be crucial for proceeding the oxidation reaction, for example S(8), a common form of elemental sulfur. This also proved to be an asset: By adding external S(8), the ligand load could be reduced, reported the authors. Their extraction method could mark a new basis for more efficient urban mining.
(3478 characters)

About the Author

Dr. Timo Repo is a principal investigator and Professor of Chemistry at the Department of Chemistry, University of Helsinki, Finland. He is interested in green chemistry and homogeneous catalysis, including catalyst development for the activation of small molecules such as CO2, H2, and O2, as well as oxidation, reduction, C-H activation and biomass valorization.


Related Gold Articles:

Turning 'junk' DNA into gold
Mining the rich uncharted territory of the genome or genetic material of a cancer cell has yielded gold for Princess Margaret scientists: new protein targets for drug development against prostate cancer.
Mathematicians find gold in data
Russian mathematicians and geophysicists have made a standard technique for ore prospecting several times more effective.
Actively swimming gold nanoparticles
Bacteria can actively move towards a nutrient source -- a phenomenon known as chemotaxis -- and they can move collectively in a process known as swarming.
Gold for silver: A chemical barter
From effective medicines to molecular sensors to fuel cells, metal clusters are becoming fundamentally useful in the health, environment, and energy sectors.
Gold for iron nanocubes
Hybrid Au/Fe nanoparticles can grow in an unprecedentedly complex structure with a single-step fabrication method.
Resolving the 'invisible' gold puzzle
In Carlin-type gold deposits, which make up 75% of the US production, gold does not occur in the form of nuggets or veins, but is hidden -- together with arsenic -- in pyrite, also known as 'fool's gold.' A team of scientists has now shown for the first time that the concentration of gold directly depends on the content of arsenic in the pyrite.
The first nucleophilic gold complex
A collaborative research effort between the departments of chemistry at the University of Oxford and University of Jyväskylä has resulted in the discovery of a gold compound exhibiting nucleophilic behavior hitherto unknown for molecular gold.
Gold recycling
'Urban mining', the recycling of precious metals from electronic gadgets, becomes ever more important, although processes that are both efficient and environmentally benign are still scarce.
Light triggers gold in unexpected way
Rice University researchers have discovered a fundamentally different form of light-matter interaction in their experiments with gold nanoparticles.
How to melt gold at room temperature
When the tension rises, unexpected things can happen -- not least when it comes to gold atoms.
More Gold News and Gold Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#541 Wayfinding
These days when we want to know where we are or how to get where we want to go, most of us will pull out a smart phone with a built-in GPS and map app. Some of us old timers might still use an old school paper map from time to time. But we didn't always used to lean so heavily on maps and technology, and in some remote places of the world some people still navigate and wayfind their way without the aid of these tools... and in some cases do better without them. This week, host Rachelle Saunders...
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at