Nav: Home

Organic food worse for the climate

December 13, 2018

Organically farmed food has a bigger climate impact than conventionally farmed food, due to the greater areas of land required. This is the finding of a new international study involving Chalmers University of Technology, Sweden, published in the journal Nature.

The researchers developed a new method for assessing the climate impact from land-use, and used this, along with other methods, to compare organic and conventional food production. The results show that organic food can result in much greater emissions.

"Our study shows that organic peas, farmed in Sweden, have around a 50 percent bigger climate impact than conventionally farmed peas. For some foodstuffs, there is an even bigger difference - for example, with organic Swedish winter wheat the difference is closer to 70 percent," says Stefan Wirsenius, an associate professor from Chalmers, and one of those responsible for the study.

The reason why organic food is so much worse for the climate is that the yields per hectare are much lower, primarily because fertilisers are not used. To produce the same amount of organic food, you therefore need a much bigger area of land.

The ground-breaking aspect of the new study is the conclusion that this difference in land usage results in organic food causing a much larger climate impact.

"The greater land-use in organic farming leads indirectly to higher carbon dioxide emissions, thanks to deforestation," explains Stefan Wirsenius. "The world's food production is governed by international trade, so how we farm in Sweden influences deforestation in the tropics. If we use more land for the same amount of food, we contribute indirectly to bigger deforestation elsewhere in the world."

Even organic meat and dairy products are - from a climate point of view - worse than their conventionally produced equivalents, claims Stefan Wirsenius.

"Because organic meat and milk production uses organic feed-stock, it also requires more land than conventional production. This means that the findings on organic wheat and peas in principle also apply to meat and milk products. We have not done any specific calculations on meat and milk, however, and have no concrete examples of this in the article," he explains.

A new metric: Carbon Opportunity Cost

The researchers used a new metric, which they call "Carbon Opportunity Cost", to evaluate the effect of greater land-use contributing to higher carbon dioxide emissions from deforestation. This metric takes into account the amount of carbon that is stored in forests, and thus released as carbon dioxide as an effect of deforestation. The study is among the first in the world to make use of this metric.

"The fact that more land use leads to greater climate impact has not often been taken into account in earlier comparisons between organic and conventional food," says Stefan Wirsenius. "This is a big oversight, because, as our study shows, this effect can be many times bigger than the greenhouse gas effects, which are normally included. It is also serious because today in Sweden, we have politicians whose goal is to increase production of organic food. If that goal is implemented, the climate influence from Swedish food production will probably increase a lot."

So why have earlier studies not taken into account land-use and its relationship to carbon dioxide emissions?

"There are surely many reasons. An important explanation, I think, is simply an earlier lack of good, easily applicable methods for measuring the effect. Our new method of measurement allows us to make broad environmental comparisons, with relative ease," says Stefan Wirsenius.

The results of the study are published in the article "Assessing the efficiency of changes in land use for mitigating climate change" in the journal Nature. The article is written by Timothy Searchinger, Princeton University, Stefan Wirsenius, Chalmers University of Technology, Tim Beringer, Humboldt Universität zu Berlin, and Patrice Dumas, Cired.

More on: The consumer perspective

Stefan Wirsenius notes that the findings do not mean that conscientious consumers should simply switch to buying non-organic food. "The type of food is often much more important. For example, eating organic beans or organic chicken is much better for the climate than to eat conventionally produced beef," he says. "Organic food does have several advantages compared with food produced by conventional methods," he continues. "For example, it is better for farm animal welfare. But when it comes to the climate impact, our study shows that organic food is a much worse alternative, in general."

For consumers who want to contribute to the positive aspects of organic food production, without increasing their climate impact, an effective way is to focus instead on the different impacts of different types of meat and vegetables in our diet. Replacing beef and lamb, as well as hard cheeses, with vegetable proteins such as beans, has the biggest effect. Pork, chicken, fish and eggs also have a substantially lower climate impact than beef and lamb.

See also earlier press release from 24 February 2016: Better technology could take agriculture halfway towards climate targets https://www.mynewsdesk.com/uk/chalmers/pressreleases/better-technology-could-take-agriculture-halfway-towards-climate-targets-1325077

More on: The conflict between different environmental goals

In organic farming, no fertilisers are used. The goal is to use resources like energy, land and water in a long-term, sustainable way. Crops are primarily nurtured through nutrients present in the soil. The main aims are greater biological diversity and a balance between animal and plant sustainability. Only naturally derived pesticides are used.

The arguments for organic food focus on consumers' health, animal welfare, and different aspects of environmental policy. There is good justification for these arguments, but at the same time, there is a lack of scientific evidence to show that organic food is in general healthier and more environmentally friendly than conventionally farmed food, according to the National Food Administration of Sweden and others. The variation between farms is big, with the interpretation differing depending on what environmental goals one prioritises. At the same time, current analysis methods are unable to fully capture all aspects.

The authors of the study now claim that organically farmed food is worse for the climate, due to bigger land use. For this argument they use statistics from the Swedish Board of Agriculture on the total production in Sweden, and the yields per hectare for organic versus conventional farming for the years 2013-2015.

Source (in Swedish): https://www.jordbruksverket.se/webdav/files/SJV/Amnesomraden/Statistik,%20fakta/Vegetabilieproduktion/JO14/JO14SM1801/JO14SM1801_ikortadrag.htm

More on biofuels: "The investment in biofuels increases carbon dioxide emissions"

Today's major investments in biofuels are also harmful to the climate because they require large areas of land suitable for crop cultivation, and thus - according to the same logic - increase deforestation globally, the researchers in the same study argue.

For all common biofuels (ethanol from wheat, sugar cane and corn, as well as biodiesel from palm oil, rapeseed and soya), the carbon dioxide cost is greater than the emissions from fossil fuel and diesel, the study shows. Biofuels from waste and by-products do not have this effect, but their potential is small, the researchers say.

All biofuels made from arable crops have such high emissions that they cannot be called climate-smart, according to the researchers, who present the results on biofuels in an op-ed in the Swedish Newspaper Dagens Nyheter: "The investment in biofuels increases carbon dioxide emissions"

Source (in Swedish): https://www.dn.se/debatt/satsningen-pa-biodrivmedel-okar-koldioxidutslappen/
-end-


Chalmers University of Technology

Related Biofuels Articles:

Barriers and opportunities in renewable biofuels production
Researchers at Chalmers University of Technology, Sweden, have identified two main challenges for renewable biofuel production from cheap sources.
How biofuels from plant fibers could combat global warming
A study from Colorado State University finds new promise for biofuels produced from switchgrass, a non-edible native grass that grows in many parts of North America.
Calculating the CO2 emissions of biofuels is not enough
A new EU regulation aims to shrink the environmental footprint of biofuels starting in 2021.
Algae cultivation technique could advance biofuels
Washington State University researchers have developed a way to grow algae more efficiently -- in days instead of weeks -- and make the algae more viable for several industries, including biofuels.
Cutting the cost of ethanol, other biofuels and gasoline
Biofuels like the ethanol in US gasoline could get cheaper thanks to experts at Rutgers University-New Brunswick and Michigan State University.
Cellulosic biofuels can benefit the environment if managed correctly
Could cellulosic biofuels -- or liquid energy derived from grasses and wood -- become a green fuel of the future, providing an environmentally sustainable way of meeting energy needs?
Making oil from algae -- towards more efficient biofuels
The mechanism behind oil synthesis within microalgae cells has been revealed by a Japanese research team.
WSU study finds people willing to pay more for new biofuels
When it comes to second generation biofuels, Washington State University research shows that consumers are willing to pay a premium of approximately 11 percent over conventional fuel.
'Super yeast' has the power to improve economics of biofuels
Scientists at the University of Wisconsin-Madison and the Great Lakes Bioenergy Research Center have found a way to nearly double the efficiency with which a commonly used industrial yeast strain converts plant sugars to biofuel.
Biofuels not as 'green' as many think
Statements about biofuels being carbon neutral should be taken with a grain of salt.
More Biofuels News and Biofuels Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Risk
Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#541 Wayfinding
These days when we want to know where we are or how to get where we want to go, most of us will pull out a smart phone with a built-in GPS and map app. Some of us old timers might still use an old school paper map from time to time. But we didn't always used to lean so heavily on maps and technology, and in some remote places of the world some people still navigate and wayfind their way without the aid of these tools... and in some cases do better without them. This week, host Rachelle Saunders...
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.