Nav: Home

New discovery improves use of optical tweezers

December 13, 2018

This year's Nobel Prize in Physics, awarded for discoveries in laser physics, recognizes optical tweezers. Now researchers from the University of Gothenburg have developed a method that greatly simplifies and improves the use of optical tweezers.

"The idea came to me during a visit to the National Autonomous University of Mexico last year. It turned out that the lab there already had all the data needed to prove that this new method worked," says Giovanni Volpe, a senior lecturer at the Department of Physics, University of Gothenburg.

Optical tweezers were discovered in the late 1980s. They can be described as light beam fingers that can take hold of particles, atoms, molecules and even bacteria and other living cells. The technique consists of an optical laser with the ability to hold onto a single cell, for example, without damaging it. This makes it possible to make very precise measurements.

Improving methods of measurement

The challenge in using optical tweezers has been the need to calibrate the optical laser exactly. Researchers using optical tweezers need to know exactly what they want to look at, and in what way, to make the precise settings required before the measurements begin.

With the new discovery currently being published in the prestigious scientific journal Nature Communications, the technique will now be considerably easier to use.

"We have managed to develop a method of measurement that is more accurate, but that uses 10 times less data and is 100 times faster than the methods currently available," says Giovanni Volpe. "The method is completely automated and does not require any pre-set parameters to work."

Can be used in the pharmaceutical industry

With this method, optical tweezers can now be moved out of the physics laboratory and be used in pharmaceutical research.

"Personally, what I find most exciting about the new method is the possibility of studying systems that are not in equilibrium, systems that are in flux," says Volpe. "We will be able to measure phenomena we knew about before but have not been able to see."

According to the researchers, optical tweezers can now be used in biological applications to measure extremely small forces. The method also makes it possible to analyse what are known as extended force fields.

Laura Perez Garcia, who is listed as the lead author in the Nature Communications article, has now joined the Department of Physics at the University of Gothenburg as a doctoral student.

"I am proud to announce this discovery. The results are due to good international cooperation, which has also led me to move to Gothenburg and become part of Giovanni Volpe's research team," says Perez Garcia.

Facts: optical tweezers

The tool was invented by Arthur Ashkin and represents a realisation of his science fiction dream - to use the force field of light to move physical objects. When Arthur Ashkin successfully used laser light to push small particles towards the midpoint of the beam and keep them there, optical tweezers were born. A major breakthrough came in 1987, when Ashkin captured live bacteria with the tweezers without damaging them. He immediately began using the tweezers to study biological systems. Today optical tweezers are widely used within the research community.
-end-
Contact: Giovanni Volpe, Department of Physics at the University of Gothenburg, telephone: +46 (0)31-786 91 37, mobile: +46 (0)70 996 61 81, e-mail: giovanni.volpe@physics.gu.se

Name of the article: High-Performance Reconstruction of Microscopic Force Fields from Brownian Trajectories

Link: https://www.nature.com/articles/s41467-018-07437-x

University of Gothenburg

Related Physics Articles:

Physics vs. asthma
A research team from the MIPT Center for Molecular Mechanisms of Aging and Age-Related Diseases has collaborated with colleagues from the U.S., Canada, France, and Germany to determine the spatial structure of the CysLT1 receptor.
2D topological physics from shaking a 1D wire
Published in Physical Review X, this new study propose a realistic scheme to observe a 'cold-atomic quantum Hall effect.'
Helping physics teachers who don't know physics
A shortage of high school physics teachers has led to teachers with little-to-no training taking over physics classrooms, reports show.
Physics at the edge
In 2005, condensed matter physicists Charles Kane and Eugene Mele considered the fate of graphene at low temperatures.
Using physics to print living tissue
3D printers can be used to make a variety of useful objects by building up a shape, layer by layer.
More Physics News and Physics Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Erasing The Stigma
Many of us either cope with mental illness or know someone who does. But we still have a hard time talking about it. This hour, TED speakers explore ways to push past — and even erase — the stigma. Guests include musician and comedian Jordan Raskopoulos, neuroscientist and psychiatrist Thomas Insel, psychiatrist Dixon Chibanda, anxiety and depression researcher Olivia Remes, and entrepreneur Sangu Delle.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...