Slicing optical beams: Cryptographic algorithms for quantum networks

December 13, 2018

"Our models are based on specific quantum functions. They turn classic information into quantum states of photons. Those functions were created to transform algorithms into models of quantum branching programs. We analyzed their cryptographic properties which turned out to be extensions of properties of classic cryptographic hash functions onto quantum examples. That's why we called them quantum hash functions. We are now analyzing cryptographic protocols based on variants of quantum hash functions," explains Research Associate of the UHF Design and Radio Telecommunications Lab Marat Ablayev.

Research results were summarized in Ablayev's recent paper in Lobachevskii Journal of Mathematics. In it, he proves the effectiveness of KFU researchers' quantum hashing algorithms. In the future, quantum authentication can be used for a more secure user experience in banking, vehicle handling, and many other areas.

Quantum cryptography can facilitate fast and secure information transfer in quantum networks. Quantum fiber optic networks based on polarized photon transportation are tested currently in Russia and other countries. Such transfer cannot be breached without detection.

"Information in quantum networks is shaped in an optical beam. We know how to translate that chaos into text, no matter what its contents are, be it a letter, a wire transfer, or a military communication message," says the scientist.

The mathematical models can be used not only for quantum networks and authentication but also for full-scale quantum computing. Quantum hashing can help protect quantum algorithms against mistakes. Relevant research is currently in progress at Kazan Federal University.
-end-


Kazan Federal University

Related Quantum Articles from Brightsurf:

Theoreticians show which quantum systems are suitable for quantum simulations
A joint research group led by Prof. Jens Eisert of Freie Universit├Ąt Berlin and Helmholtz-Zentrum Berlin (HZB) has shown a way to simulate the quantum physical properties of complex solid state systems.

Quantum shake
There they were, in all their weird quantum glory: ultracold lithium atoms in the optical trap operated by UC Santa Barbara undergraduate student Alec Cao and his colleagues in David Weld's atomic physics group.

New evidence for quantum fluctuations near a quantum critical point in a superconductor
A study has found evidence for quantum fluctuations near a quantum critical point in a superconductor.

Quantum simulation of quantum crystals
International research team describes the new possibilities offered by the use of ultracold dipolar atoms

Quantum machines learn "quantum data"
Skoltech scientists have shown that quantum-enhanced machine learning can be used on quantum (as opposed to classical) data, overcoming a significant slowdown common to these applications and opening a ''fertile ground to develop computational insights into quantum systems''.

Simulating quantum 'time travel' disproves butterfly effect in quantum realm
Using a quantum computer to simulate time travel, researchers have demonstrated that, in the quantum realm, there is no 'butterfly effect.' In the research, information--qubits, or quantum bits--'time travel' into the simulated past.

Orbital engineering of quantum confinement in high-Al-content AlGaN quantum well
Recently, professor Kang's group focus on the limitation of quantum confine band offset model, the hole states delocalization in high-Al-content AlGaN quantum well are understood in terms of orbital intercoupling.

Quantum classifiers with tailored quantum kernel?
Quantum information scientists have introduced a new method for machine learning classifications in quantum computing.

A Metal-like Quantum Gas: A pathbreaking platform for quantum simulation
Coherent and ultrafast laser excitation creates an exotic matter phase with spatially overlapping electronic wave-functions under nanometric control in an artificial micro-crystal of ultracold atoms.

Quantum leap: Photon discovery is a major step toward at-scale quantum technologies
A team of physicists at the University of Bristol has developed the first integrated photon source with the potential to deliver large-scale quantum photonics.

Read More: Quantum News and Quantum Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.