# Slicing optical beams: Cryptographic algorithms for quantum networks

December 13, 2018"Our models are based on specific quantum functions. They turn classic information into quantum states of photons. Those functions were created to transform algorithms into models of quantum branching programs. We analyzed their cryptographic properties which turned out to be extensions of properties of classic cryptographic hash functions onto quantum examples. That's why we called them quantum hash functions. We are now analyzing cryptographic protocols based on variants of quantum hash functions," explains Research Associate of the UHF Design and Radio Telecommunications Lab Marat Ablayev.

Research results were summarized in Ablayev's recent paper in

*Lobachevskii Journal of Mathematics*. In it, he proves the effectiveness of KFU researchers' quantum hashing algorithms. In the future, quantum authentication can be used for a more secure user experience in banking, vehicle handling, and many other areas.

Quantum cryptography can facilitate fast and secure information transfer in quantum networks. Quantum fiber optic networks based on polarized photon transportation are tested currently in Russia and other countries. Such transfer cannot be breached without detection.

"Information in quantum networks is shaped in an optical beam. We know how to translate that chaos into text, no matter what its contents are, be it a letter, a wire transfer, or a military communication message," says the scientist.

The mathematical models can be used not only for quantum networks and authentication but also for full-scale quantum computing. Quantum hashing can help protect quantum algorithms against mistakes. Relevant research is currently in progress at Kazan Federal University.

-end-

Kazan Federal University

**Related Quantum Articles:**

Quantum nanoscope

Researchers have studied how light can be used to 'see' the quantum nature of an electronic material.

Researchers have studied how light can be used to 'see' the quantum nature of an electronic material.

'Quantum leap' for Liverpool

Physicists from the University of Liverpool have made a huge step forwards towards building a novel experiment to probe the 'dark contents' of the vacuum.

Physicists from the University of Liverpool have made a huge step forwards towards building a novel experiment to probe the 'dark contents' of the vacuum.

Testing quantum field theory in a quantum simulator

Quantum field theories are often hard to verify in experiments.

Quantum field theories are often hard to verify in experiments.

Quantum reservoir for microwaves

EPFL researchers use a mechanical micrometer-size drum cooled close to the quantum ground state to amplify microwaves in a superconducting circuit.

EPFL researchers use a mechanical micrometer-size drum cooled close to the quantum ground state to amplify microwaves in a superconducting circuit.

Looking for the quantum frontier

Researchers have developed a new theoretical framework to identify computations that occupy the 'quantum frontier' -- the boundary at which problems become impossible for today's computers and can only be solved by a quantum computer.

Researchers have developed a new theoretical framework to identify computations that occupy the 'quantum frontier' -- the boundary at which problems become impossible for today's computers and can only be solved by a quantum computer.

Quantum mechanics are complex enough, for now...

Physicists have searched for deviations from standard quantum mechanics, testing whether quantum mechanics requires a more complex set of mathematical rules.

Physicists have searched for deviations from standard quantum mechanics, testing whether quantum mechanics requires a more complex set of mathematical rules.

Seeing the quantum future... literally

Sydney scientists have demonstrated the ability to 'see' the future of quantum systems and used that knowledge to preempt their demise, in a major achievement that could help bring the strange and powerful world of quantum technology closer to reality.

Sydney scientists have demonstrated the ability to 'see' the future of quantum systems and used that knowledge to preempt their demise, in a major achievement that could help bring the strange and powerful world of quantum technology closer to reality.

The sound of quantum vacuum

Quantum mechanics dictates sensitivity limits in the measurements of displacement, velocity and acceleration.

Quantum mechanics dictates sensitivity limits in the measurements of displacement, velocity and acceleration.

New quantum states for better quantum memories

How can quantum information be stored as long as possible?

How can quantum information be stored as long as possible?

**Related Quantum Reading:**

## Best Science Podcasts 2019

We have hand picked the**best science podcasts**for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.

**Now Playing: TED Radio Hour**

**Digital Manipulation**

Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe â even how we vote â can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.

**Now Playing: Science for the People**

**#529 Do You Really Want to Find Out Who's Your Daddy?**

At least some of you by now have probably spit into a tube and mailed it off to find out who your closest relatives are, where you might be from, and what terrible diseases might await you. But what exactly did you find out? And what did you give away? In this live panel at Awesome Con we bring in science writer Tina Saey to talk about all her DNA testing, and bioethicist Debra Mathews, to determine whether Tina should have done it at all. Related links: What FamilyTreeDNA sharing genetic data with police means for you Crime solvers embraced...