Nav: Home

Magic number colloidal clusters

December 13, 2018

Complexity in nature, whether in chlorophyll or in living organisms, often results from self-assembly and is considered particularly robust. Compact clusters of elemental particles can be shown to be of practical relevance, and are found in atomic nuclei, nano particles or viruses. Researchers at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have decoded the structure and the process behind the formation of one class of such highly ordered clusters. Their findings have increased understanding of how structures are formed in clusters.

In physics, a cluster is defined as an independent material form at the transition area between isolated atoms and more extensive solid objects or liquids. Magic number clusters can be traced back to the work of Eugene Wigner, Maria Göppert-Mayer and Hans Jensen, who used this theory to explain the stability of atomic nuclei and won the Nobel prize for physics for their research in 1963. 'Until now, scientists have assumed that the effect is caused purely as a result of the attraction between atoms,' says Prof. Dr. Nicolas Vogel, Professor for Particle Synthesis. Our research now proves that particles which don't attract each other also form structures such as these. Our publication contributes to a greater understanding of how structures are formed in clusters in general.'

The research is based on an interdisciplinary collaboration: Prof. Dr. Nicolas Vogel, researcher at the Chair of Particle Technology, and Prof. Dr. Michael Engel, researcher at the Chair of Multi-scale Simulation - both from the Department of Chemical and Biological Engineering - have worked closely together with the materials science expert Prof. Dr. Erdmann Spiecker from the Chair of Materials Science (research into micro and nanostructures), pooling their expertise from the various areas. Vogel was responsible for synthesis, Spiecker for structure analysis and Engel for modelling clusters from colloidal polymer balls. The term colloidal is derived from the ancient Greek word for glue and refers to particles or droplets which are finely distributed in a dispersion medium, either a solid object, a gas, or a liquid. 'Our three approaches are particularly closely linked in this project,' underlines Prof. Engel, 'they complement each other and allow us to gain a deep understanding of the fundamental processes behind the forming of structures for the first time.'

Structures assemble themselves

The first step for the researchers in a process which covers several steps was to synthesise minute colloidal clusters, no larger than a tenth of the diameter of a single hair in total. 'First of all, water evaporates from an emulsion droplet and the polymer balls are pushed together. Over time, they assemble increasingly smoother sphere-shaped clusters and begin to crystallise. It is remarkable how several thousand individual particles independently find their ideal position in a precise and highly symmetrical structure in which all particles are placed in predictable positions,' explains Prof. Vogel.

The researchers discovered more than 25 different magic number colloidal clusters of various shapes and sizes and were able to define four different cluster morphologies: where evaporation was fastest, buckled clusters were formed, as the droplet interface moved faster than the colloidal particles could consolidate. If the evaporation rate was lowered, the clusters were predominantly spherical. Spherical clusters have a uniformly curved surface with only a weak pattern of crystals. Clusters with icosahedral symmetry were formed as the rate of evaporation decreased further. These clusters have a particularly high degree of symmetry and have numerous two, three or five fold symmetry axes.

Using high resolution microscopy to show the surface of the cluster does not provide sufficient proof of these symmetries. Even if the surface of a cluster appears highly ordered, that is no guarantee that the particles inside the cluster are arranged as expected. To verify this, the researchers used electron tomography, available at the Erlangen Centre for Nanoanalysis and Electron Microscopy (CENEM). Individual clusters are bombarded with highly energised electrons from all directions and the images recorded. From more than 100 projections, researchers were able to reconstruct the three dimensional structure of the clusters and therefore the pattern of the particles within the clusters in a method reminiscent of computer tomography as used in medicine.

In the next step, the researchers conducted simulations and highly accurate numerical calculations. The analyses proved that clusters consisting of numbers of particles corresponding to a magic number are indeed more stable, as predicted on the basis of the theory. It is well known that the observed icosahedral symmetry can be found in viruses and ultra-small metal clusters, but it has never been investigated directly. Now, with these results, a detailed and systematic understanding of how such magic number clusters are formed in the investigated model system is possible for the first time, allowing conclusions to be drawn for other natural systems where clusters tend to be formed.
-end-


University of Erlangen-Nuremberg

Related Viruses Articles:

First video of viruses assembling
For the first time, researchers have captured images of the formation of individual viruses, offering a real-time view into the kinetics of viral assembly.
Plant viruses may be reshaping our world
A new review article appearing in the journal Nature Reviews Microbiology highlights the evolution and ecology of plant viruses.
Checkmate for hepatitis B viruses in the liver
Researchers at Helmholtz Zentrum München and the Technical University of Munich, working in collaboration with researchers at the University Medical Center Hamburg-Eppendorf and the University Hospital Heidelberg, have for the first time succeeded in conquering a chronic infection with the hepatitis B virus in a mouse model.
How viruses outsmart their host cells
Viruses depend on host cells for replication, but how does a virus induce its host to transcribe its own genetic information alongside that of the virus, thus producing daughter viruses?
Mobile, instant diagnosis of viruses
In a first for plant virology, a team from CIRAD recently used nanopore technology to sequence the entire genomes of two yam RNA viruses.
How ancient viruses got cannabis high
THC and CBD, bioactive substances produced by cannabis and sought by medical patients and recreational users, sprung to life thanks to ancient colonization of the plant's genome by viruses, U of T researchers have found.
Viruses under the microscope
Human herpesviruses such as HHV-6 can remain dormant in cells for many years without being noticed.
Ancient origins of viruses discovered
Research published today in Nature has found that many of the viruses infecting us today have ancient evolutionary histories that date back to the first vertebrates and perhaps the first animals in existence.
Attacking flu viruses from two sides
UZH researchers have discovered a new way in which certain antibodies interact with the flu virus.
How bats carry viruses without getting sick
Bats are known to harbor highly pathogenic viruses like Ebola or Marburg and yet they do not show clinical signs of disease.
More Viruses News and Viruses Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Risk
Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#540 Specialize? Or Generalize?
Ever been called a "jack of all trades, master of none"? The world loves to elevate specialists, people who drill deep into a single topic. Those people are great. But there's a place for generalists too, argues David Epstein. Jacks of all trades are often more successful than specialists. And he's got science to back it up. We talk with Epstein about his latest book, "Range: Why Generalists Triumph in a Specialized World".
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.