Nav: Home

Snow over Antarctica buffered sea level rise during last century

December 13, 2018

new NASA-led study has determined that an increase in snowfall accumulation over Antarctica during the 20th century mitigated sea level rise by 0.4 inches. However, Antarctica's additional ice mass gained from snowfall makes up for just about a third of its current ice loss.

"Our findings don't mean that Antarctica is growing; it's still losing mass, even with the extra snowfall," said Brooke Medley, a glaciologist with NASA Goddard Space Flight Center in Greenbelt, Maryland, and lead author of the study, which was published in Nature Climate Change on Dec. 10. "What it means, however, is that without these gains, we would have experienced even more sea level rise in the 20th century."

The polar ice sheets grow via snow accumulation and shrink through melting and the production of icebergs. Presently, both ice sheets are imbalanced -losing more ice annually than they are gaining- and their ice loss is estimated to be currently causing about a half of the observed sea level rise. Sea level adjusts to changes in snowfall, which modulates how much water is locked into the ice sheets.

Snowfall is very difficult to measure over Antarctica. For starters, there are very few weather stations in the frozen continent, and most of them are installed along the coastline. Secondly, satellites have a hard time measuring snow from space - they basically confuse the snow that's falling down with the snow that's already on the ground. Climate models struggle to replicate the total amount of snow that falls over Antarctica each year. So scientists often have to rely on ice cores, cylinders of ice drilled from the ice sheet whose layers store a trove of information; amongst it, how much snow fell in a certain year or decade. But drilling ice cores is logistically challenging, so they are sparse and do not cover the entire continent.

Medley and her colleague, British Antarctic Survey's Elizabeth Thomas, reconstructed how much snow fell over the entire Antarctic continent and nearby islands from 1801 to 2000 using 53 ice cores and three atmospheric reanalyses -climate models informed by satellite observations. Ice cores are only point measurements of snow accumulation, but by comparing them to the reanalyses' simulations of Antarctic snowfall across the ice sheet, the researchers were able to determine the area of Antarctica each ice core was representative of.

The scientists found that the distribution of ice cores gave a good coverage of most of Antarctica, with some gaps in portions of East Antarctica due to the fact that this area of the continent sees extremely little snowfall, making it difficult to measure.

"Antarctica is bigger than the contiguous United States. You wouldn't say that because you're in New York City and it's snowing, it must mean that it's also snowing in San Diego. It's the same with Antarctica; you can't just stand in one spot, take one measurement and say 'okay, I think I have a good handle on all of Antarctica.' It requires a lot of measurements," Medley said.

Medley and Thomas found that snow accumulation increased over the 20th century by 0.04 inches per decade, and that rate more than doubled after 1979.

"From the ice cores we know that the current rate of change in snowfall is unusual in the context of the past 200 years," Thomas said.

The researchers also investigated what caused the increase of snowfall and its distribution pattern over the ice sheet from 1901 to 2000. They found that it was consistent with a warming atmosphere, which holds more moisture, combined with changes in the Antarctic circumpolar westerly winds that are related to the ozone hole. A related paper published in Geophysical Research Letters on Dec. 10 confirms the relationship between stratospheric ozone depletion and increased snowfall over Antarctica.

"The fact that changes in westerly winds due to ozone depletion plays a role in Antarctic snow accumulation variability indicates that even this remote, uninhabited land has been affected by human activity," Medley said.

"The increased snowfall is a symptom of the same changes in atmospheric circulation that are causing the melt of Antarctic ice," Thomas said.

"Snowfall plays a critical role in Antarctic mass balance and it will continue to do so in the future," Medley said. "Currently it is helping mitigate ice losses, but it's not entirely compensating for them. We expect snowfall will continue to increase into the 21st century and beyond, but our results show that future increases in snowfall cannot keep pace with oceanic-driven ice losses in Antarctica."

Medley hoped that their results will also help evaluate existing climate models so that ice sheet modelers can pick the most reliable ones to use for their predictions of how the Antarctic ice sheet will behave in the future.
-end-


NASA/Goddard Space Flight Center

Related Ice Sheet Articles:

Thousands of meltwater lakes mapped on the east Antarctic ice sheet
The number of meltwater lakes on the surface of the East Antarctic Ice Sheet is more significant than previously thought, according to new research.
Researchers discover ice is sliding toward edges off Greenland Ice Sheet
They found that ice slides over the bedrock much more than previous theories predicted of how ice on the Greenland Ice Sheet moves.
A clearer picture of global ice sheet mass
Fluctuations in the masses of the world's largest ice sheets carry important consequences for future sea level rise, but understanding the complicated interplay of atmospheric conditions, snowfall input and melting processes has never been easy to measure due to the sheer size and remoteness inherent to glacial landscapes.
Researchers discover more than 50 lakes beneath the Greenland Ice Sheet
Researchers have discovered 56 previously uncharted subglacial lakes beneath the Greenland Ice Sheet bringing the total known number of lakes to 60.
Ice-sheet variability during the last ice age from the perspective of marine sediment
By using marine sediment cores from Northwestern Australia, a Japanese team led by National Institute of Polar Research (NIPR) and the University of Tokyo revealed that the global ice sheet during the last ice age had changed in shorter time scale than previously thought.
Novel hypothesis goes underground to predict future of Greenland ice sheet
The Greenland ice sheet melted a little more easily in the past than it does today because of geological changes, and most of Greenland's ice can be saved from melting if warming is controlled, says a team of Penn State researchers.
Greenland's southwest ice sheet particularly sensitive to warming
The ice fields of southwest Greenland are becoming particularly sensitive to a climate cycle called the North Atlantic Oscillation as global warming proceeds.
Antarctic ice sheet could suffer a one-two climate punch
Variations in the axial tilt of the Earth have significant implications for the rise and fall of the Antarctic Ice Sheet, the miles-deep blanket of ice that locks up huge volumes of water that, if melted, would dramatically elevate sea level and alter the world's coastlines.
The first impact crater found underneath the Greenland ice sheet
A 31-kilometer-wide impact crater underneath about a kilometer of the Hiawatha Glacier's ice is the first of its kind to be discovered in northwest Greenland, scientists report.
Moderate warming could melt East Antarctic Ice Sheet
Parts of the world's largest ice sheet would melt if Antarctic warming of just 2°C is sustained for millennia, according to international research.
More Ice Sheet News and Ice Sheet Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Risk
Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#541 Wayfinding
These days when we want to know where we are or how to get where we want to go, most of us will pull out a smart phone with a built-in GPS and map app. Some of us old timers might still use an old school paper map from time to time. But we didn't always used to lean so heavily on maps and technology, and in some remote places of the world some people still navigate and wayfind their way without the aid of these tools... and in some cases do better without them. This week, host Rachelle Saunders...
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.