Nav: Home

Simultaneous emission of orthogonal handedness in circular polarization

December 13, 2019

Control of the polarization of light is a key feature for displays, optical data storage, optical quantum information, and chirality sensing. In particular, the direct emission of circularly polarized (CP) light has attracted great interest because of the enhanced performance of displays such as organic light-emitting diodes (OLEDs) and light sources for characterizing the secondary structure of proteins. To actually produce the CP light, the luminescent layer should contain chiral characteristics, which can be achieved, for example, by decorating the luminophores with chiral materials or doping chiral molecules into achiral materials. However, such chirality of the luminescent layer makes it possible to generate only one kind of CP light in an entire device since it is difficult to control the chiral sense spatially.

In a new paper published in Light Science & Application, scientists from Department of Electronic Engineering, Hanyang University, Republic of Korea demonstrated simultaneously emitting device with orthogonal handedness in circular polarization from an achiral luminophore with liquid crystalline (LC) phase. By rubbing alignments of luminophores in its upper and lower surfaces in different directions, the luminescent layer is continuously twisted and thus light passing through the luminescent layer emerges as right-handed (RH) or left-handed (LH) CP light without any chiral part. More interestingly, such twisting sense is determined by the rubbing directions in its upper and lower surfaces. As a result, by generating multiple alignments in the lower surface of the achiral luminophore and unidirectional alignment in its upper surface, light-emitting device with orthogonal handedness in circular polarization was implemented with a single achiral luminophore. This experimental demonstration highlights the feasibility of the light source with multi-polarization, including orthogonal CP states, thereby paving the way towards novel applications in biosensors as well as optical devices such as OLEDs.

In a conventional OLED, since a circular polarizer in front of the OLED panel is inevitably required to prevent reflection of ambient light from a metal electrode, only half of the light extracted from the OLED panel reaches the eye. As a result, direct emission of CP light from an OLED with the same handedness as that of the circular polarizer in front of the OLED panel can increase the efficiency of the emitted light. High efficient OLED is implemented by directly generating high degree of CP light, which is achieved from a twisted structure of the LC luminophore. The twisted sense of the LC luminophore was governed by producing the different boundary conditions in its upper and lower surfaces. In addition, the degree of CP light in the twisted luminophore was theoretically calculated based on Mueller matrix analysis and a CP light-emitting mechanism was confirmed. These scientists summarize scientific achievement in their CP light-emitting device:

"For the first time, we demonstrate direct CP light emissions by using a twisted achiral conjugate polymer without any chiral component by introducing different boundary conditions in upper and lower surfaces of the polymer. By patterning different alignment directions on its one of polymer surfaces, patterned CP light with various polarization states can be achieved through the fabricating process proposed herein. Also, twisting limitation of the polymer by surface boundary conditions was systematically analyzed based on the surface anchoring energy model and the degree of CP light was theoretically calculated based on the Mueller matrix analysis."

"The fabricating process and theoretical analysis proposed herein emphasizes the feasibility of the light source with multi-polarization, including orthogonal CP states, thereby paving the way towards novel applications in biosensors as well as optical devices such as OLEDs" the scientists forecast.
-end-


Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences

Related Polymer Articles:

Safety of bioabsorbable polymer against durable polymer DES in high-risk PCI patients
A novel study sought to reveal whether drug-eluting stents (DES) coated with bioabsorbable polymer (BP) presented a safety advantage without compromising efficacy compared to durable polymer (DP) formulations.
Polymer membranes could benefit from taking a dip
A new technique developed by a team including researchers from the US Department of Energy (DOE)'s Argonne National Laboratory makes atomic layer deposition possible on nearly any membrane.
New polymer material may help batteries become self-healing, recyclable
Lithium-ion batteries are notorious for developing internal electrical shorts that can ignite a battery's liquid electrolytes, leading to explosions and fires.
Researchers add order to polymer gels
Gel-like materials have a wide range of applications, especially in chemistry and medicine.
Bundlemers (new polymer units) could transform industries
From tires to clothes to shampoo, many ubiquitous products are made with polymers, large chain-like molecules made of smaller sub-units, called monomers, bonded together.
New synthetic polymer degradable under very mild acidic conditions
A new type of degradable synthetic polymer was prepared by Rh-catalyzed three-component polymerization of a bis(diazocarbonyl) compound, bis(1,3-diketone), and tetrahydrofuran.
New polymer tackles PFAS pollution
toxic polyfluorinated alkyl substances (PFAS) pollution -- commonly used in non-stick and protective coatings, lubricants and aviation fire-fighting foams -- can now be removed from the environment thanks to a new low-cost, safe and environmentally friendly polymer.
New polymer films conduct heat instead of trapping it
MIT engineers have flipped the picture of the standard polymer insulator, by fabricating thin polymer films that conduct heat -- an ability normally associated with metals.
Polymer reversibly glows white when stretched
Polymers that change their appearance in response to mechanical forces can warn of damage developing in a material before the stress causes structural failure.
New materials: Growing polymer pelts
Polymer pelts made of the finest of fibers are suitable for many different applications, from coatings that adhere well and are easy to remove to highly sensitive biological detectors.
More Polymer News and Polymer Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: IRL Online
Original broadcast date: March 20, 2020. Our online lives are now entirely interwoven with our real lives. But the laws that govern real life don't apply online. This hour, TED speakers explore rules to navigate this vast virtual space.
Now Playing: Science for the People

#574 State of the Heart
This week we focus on heart disease, heart failure, what blood pressure is and why it's bad when it's high. Host Rachelle Saunders talks with physician, clinical researcher, and writer Haider Warraich about his book "State of the Heart: Exploring the History, Science, and Future of Cardiac Disease" and the ails of our hearts.
Now Playing: Radiolab

Falling
There are so many ways to fall–in love, asleep, even flat on your face. This hour, Radiolab dives into stories of great falls.  We jump into a black hole, take a trip over Niagara Falls, upend some myths about falling cats, and plunge into our favorite songs about falling. Support Radiolab by becoming a member today at Radiolab.org/donate.