Colliding molecules and antiparticles

December 13, 2019

Antiparticles - subatomic particles that have exactly opposite properties to those that make up everyday matter - may seem like a concept out of science fiction, but they are real, and the study of matter-antimatter interactions has important medical and technological applications. Marcos Barp and Felipe Arretche from the Universidade Federal de Santa Catarina, Brazil have modelled the interaction between simple molecules and antiparticles known as positrons and found that this model agreed well with experimental observations. This study has been published in EPJ D.

Positrons, the antimatter equivalent of electrons, are the simplest and most abundant antiparticles, and they have been known and studied since the 1930s. Particle accelerators generate huge quantities of high-energy positrons, and most lab experiments require this energy to be reduced to a specific value. Typically, this is achieved by passing the positrons through a gas in an apparatus called a buffer-gas positron trap, so they lose energy by colliding with the molecules of the gas. However, we do not yet fully understand the mechanisms of energy loss at the atomic level, so it is difficult to predict the resulting energy loss precisely.

Some of this energy is lost as rotational energy, when the positrons collide with gas molecules and cause them to spin. Barp and Arretche developed a model to predict this form of energy loss when positrons collide with molecules often used in buffer-gas positron traps: the tetrahedral carbon tetrafluoride (CF4) and methane (CH4), and the octahedral sulphur hexafluoride (SF6). They found that this model compared very well to experimental results.

This model can be applied to collisions between positrons and any tetrahedral or octahedral molecules. Barp and Arretche hope that this improved understanding of how positrons interact with molecules will be used to improve techniques for positron emission tomography (PET) scanning in medicine, for example.

M.V. Barp and F. Arretche (2019) Rotational excitation of tetrahedral and octahedral molecules caused by electron and positron impact, European Physical Journal D 73: 244, DOI: 10.1140/epjd/e2019-100444-5


Related Molecules Articles from Brightsurf:

Finally, a way to see molecules 'wobble'
Researchers at the University of Rochester and the Fresnel Institute in France have found a way to visualize those molecules in even greater detail, showing their position and orientation in 3D, and even how they wobble and oscillate.

Water molecules are gold for nanocatalysis
Nanocatalysts made of gold nanoparticles dispersed on metal oxides are very promising for the industrial, selective oxidation of compounds, including alcohols, into valuable chemicals.

Water molecules dance in three
An international team of scientists has been able to shed new light on the properties of water at the molecular level.

How molecules self-assemble into superstructures
Most technical functional units are built bit by bit according to a well-designed construction plan.

Breaking down stubborn molecules
Seawater is more than just saltwater. The ocean is a veritable soup of chemicals.

Shaping the rings of molecules
Canadian chemists discover a natural process to control the shape of 'macrocycles,' molecules of large rings of atoms, for use in pharmaceuticals and electronics.

The mysterious movement of water molecules
Water is all around us and essential for life. Nevertheless, research into its behaviour at the atomic level -- above all how it interacts with surfaces -- is thin on the ground.

Spectroscopy: A fine sense for molecules
Scientists at the Laboratory for Attosecond Physics have developed a unique laser technology for the analysis of the molecular composition of biological samples.

Looking at the good vibes of molecules
Label-free dynamic detection of biomolecules is a major challenge in live-cell microscopy.

Colliding molecules and antiparticles
A study by Marcos Barp and Felipe Arretche from Brazil published in EPJ D shows a model of the interaction between positrons and simple molecules that is in good agreement with experimental results.

Read More: Molecules News and Molecules Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to