New assay assesses multiple cellular pathways at once

December 13, 2019

A novel technological approach developed by researchers at Baylor College of Medicine expands from two to six the number of molecular pathways that can be studied simultaneously in a cell sample with the dual luciferase assay, a type of testing method commonly used across biomedical fields.

Published in the journal Nature Communications, the report shows that multiplexed hextuple luciferase assaying, meaning a testing method that can effectively probe six different pathways. It can also be used to monitor the effects of experimental treatments on multiple molecular targets acting within these pathways. The new assay is sensitive, saves time and expense when compared to traditional approaches, reduces experimental error and can be adapted to any research field where the dual luciferase assay is already implemented, and beyond.

"One of the interests of our lab is to have a better understanding of the processes involved in cancer. Cancer usually originates through changes on many different genes and pathways, not just one, and currently most cell-based screening assays conduct single measurements," said corresponding author Dr. Koen Venken, assistant professor of biochemistry and molecular biology, and pharmacology and chemical biology at Baylor.

To get a more detailed picture of the cellular processes that differentiate normal versus cancer cells, researchers resort to conduct several independent screening assays at the expense of time and additional cost.

"Our goal in this study was to measure multiple cellular pathways at once in a single biological sample, which would also minimize experimental errors resulting from conducting multiple separate assays using different samples," said Venken, a McNair Scholar and member of the Dan L Duncan Comprehensive Cancer Center at Baylor.

Dr. Alejandro Sarrion-Perdigones, first author of the paper, focused on developing a multiplexed method - a method for simultaneously detecting many signals from complex systems, such as living cells. He developed a sensitive assay using luciferases, enzymes that produce bioluminescence. The assay includes six luciferases, each one emitting bioluminescence that can be distinguished from the others. Each luciferase was engineered to reveal the activity of a particular pathway by emitting bioluminescence.

"To engineer and deliver the luciferase system to cells, we used a 'molecular Lego' approach," said co-author Dr. Lyra Chang, post-doctoral researchers at the Center for Drug Discovery at Baylor. "This consists of connecting the DNA fragments encoding all the biological and technological information necessary to express each luciferase gene together sequentially forming a single DNA chain called vector. This single vector enters the cells where each luciferase enzyme is produced separately."

Treating the cells with a single multi-luciferase gene vector instead of using six individual vectors, decreased variability between biological replicates and provided an additional level of experimental control, Chang explained. This approach allowed for simultaneous readout of the activity of five different pathways, compared to just one using traditional approaches, providing a much deeper understanding of cellular pathways of interest.

"In addition to applications in cancer research, as we have shown in this work, our multiplex luciferase assay can be used to study other cellular pathways or complex diseases across different research fields," Venken said. "For instance, the assay can be adapted to study the effect of drugs on insulin sensitivity in different cells types, the immune response to viral infections, or any other combinations of pathways."
-end-
Other contributors to this work include Yezabel Gonzalez, Tatiana Gallego-Flores and Damian W. Young, all at Baylor.

This work was supported by start-up funds provided by Baylor College of Medicine, the Albert and Margaret Alkek Foundation and the McNair Medical Institute at The Robert and Janice McNair Foundation. Additional support was provided by March of Dimes Foundation grant #1-FY14-315, the Foundation For Angelman Syndrome Therapeutics grant FT2016-002, the Cancer Prevention and Research Institute of Texas grants R1313 and R1314 and the National Institutes of Health grants 1R21GM110190, 1R21OD022981 and R01GM109938.

In memory of Dr. Alejandro Sarrion-Perdigones, who passed away before the paper was published.

Baylor College of Medicine

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.