The secret life of acid dust

December 14, 2004

SAN FRANCISCO--Dry dust reacts with air pollutants to form dewy particles whose sunlight-reflecting and cloud-altering properties are unaccounted for in atmospheric models.

"Calcite-containing dust particles blow into the air and encounter gaseous nitric acid in polluted air from factories to form an entirely new particle of calcium nitrate," said Alexander Laskin, a senior research scientist at the Department of Energy's Pacific Northwest National Laboratory in Richland, Washington.

"These nitrates have optical and chemical properties that are absolutely different from those of originally dry dust particles, and climate models need to be updated to reflect this chemistry." Calcite dust is ubiquitous in arid areas such as Israel, where this past winter Laskin and colleagues Vicki Grassian, chemistry professor at the University of Iowa, and Yinon Rudich, professor of environmental sciences and energy research at the Weizmann Institute of Science, collected particles for analysis. Laskin presented their findings Tuesday at the American Geophysical Union fall meeting.

Working from a mountaintop, the team collected dust that had blown in from the northern shores of Egypt, Sinai and southern Israel. The particles had mingled with air containing pollutants that originated from Cairo. They analyzed nearly 2,000 individual micron-sized particles and observed the physical and chemical changes with an array of techniques at the W.R. Wiley Environmental Molecular Sciences Laboratory at PNNL.

A key change in the properties of the newly formed nitrate particles is that they begin to absorb water and retain the moisture. These wet particles can scatter and absorb sunlight -- presenting climate modelers, who need to know where the energy is going, a new wild card to deal with. Companion studies of dust samples from the Sahara and the Saudi coast and loess from China show that the higher the calcium in the mineral, the more reactive they are in with nitric acid. And once the particle is changed, it stays that way.

"When dust storms kick up these particles and they enter polluted areas, the particles change," Laskin said. "To what extent this is happening globally, as more of the world becomes industrialized, we don't know. But now we have the laboratory and field evidence that shows it is definitely happening. The story is much more complicated than anybody thought."
-end-
PNNL (www.pnl.gov) is a DOE Office of Science laboratory that solves complex problems in energy, national security, the environment and life sciences by advancing the understanding of physics, chemistry, biology and computation. PNNL employs 3,900, has a $640 million annual budget, and has been managed by Ohio-based Battelle since the lab's inception in 1965.

DOE/Pacific Northwest National Laboratory

Related Calcium Articles from Brightsurf:

A new strategy for the greener use of calcium carbide
Computational chemists from St Petersburg University and the Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences have developed a new strategy for using calcium acetylide in the synthesis of organic compounds.

New link between calcium and cardiolipin in heart defects
To function properly, the heart needs energy from cells' powerhouses, the mitochondria.

'Give me the calcium!' Tulane virus takes over cellular calcium signaling to replicate
Researchers uncover the first piece of functional evidence suggesting that Tulane virus and human norovirus use viroporins to control cellular calcium signaling.

Carbon dots make calcium easier to track
Prof. DONG Wenfei's research group from the Suzhou Institute of Biomedical Engineering and Technology (SIBET) has developed a new type of fluorescent carbon dot that can effectively detect calcium levels in cells.

Calcium batteries: New electrolytes, enhanced properties
Calcium-based batteries promise to reach a high energy density at low manufacturing costs.

Chelated calcium benefits poinsettias
Cutting quality has an impact on postharvest durability during shipping and propagation of poinsettias.

New study uncovers the interaction of calcium channels
Korean researchers have identified the interactions of the combinants among calcium channel proteins that exist in nerve and heart cells.

Calcium-catalyzed reactions of element-H bonds
Calcium-catalyzed reactions of element-H bonds provide precise and efficient tools for hydrofunctionalization.

A bioengineered tattoo monitors blood calcium levels
Scientists have created a biomedical tattoo that becomes visible on the skin of mice in response to elevated levels of calcium in the blood.

The dinosaur menu, as revealed by calcium
By studying calcium in fossil remains in deposits in Morocco and Niger, researchers have been able to reconstruct the food chains of the past, thus explaining how so many predators could coexist in the dinosaurs' time.

Read More: Calcium News and Calcium Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.