Researchers improve predictions of cloud formation for better global climate modeling

December 14, 2004

Arlington, Va.--Atmospheric scientists have developed simple, physics-based equations that address some of the limitations of current methods for representing cloud formation in global climate models - important because of increased aerosol pollution that gives clouds more cooling power and affects precipitation.

The National Science Foundation (NSF)-funded researchers, led by scientists at the Georgia Institute of Technology, also have developed a new instrument for measuring the conditions and time needed for a particle to become a cloud droplet. This will help scientists determine how various types of emissions affect cloud formation.

Georgia Tech scientist Athanasios Nenes will present a lecture on the work at the American Geophysical Union's fall meeting in San Francisco on Dec. 17. The session is titled "Tropospheric Aerosol Processes: The Physical and Chemical Aging of Aerosol Particles and Their Impacts."

Clouds play a critical role in climate, Nenes explained. Low, thick clouds cool the earth by reflecting solar radiation whereas high, thin clouds have warming properties by trapping infrared radiation emitted by the earth.

Scientists have learned that human activities influence cloud formation. Airborne particles released by smokestacks, charcoal grills and car exhaust restrict the growth of cloud droplets, causing condensing water to spread out among a larger number of smaller droplets. Known as the "indirect aerosol effect," it gives clouds more surface area and reflectivity, which translates into greater cooling power. The clouds may also have less chance of forming rain, which allows cloud to remain longer for cooling.

"Of all the components of climate change, the aerosol indirect effect has the greatest potential cooling effect, yet quantitative estimates are highly uncertain," said Nenes. "We need to get more rigorous and accurate representation of how particles modify cloud properties. Until the aerosol indirect effect is well understood, society is incapable of assessing its impact on future climate."

Current computer climate models can't accurately predict cloud formation, which, in turn, hinders their ability to forecast climate change from human activities. "Because of their coarse resolution, computer models produce values on large spatial scales (hundreds of kilometers) and can only represent large cloud systems," Nenes said.

Aerosol particles, however, are extremely small and measured in micrometers. This means predictive models must address processes taking place on a very broad range of scale. "Equations that describe cloud formation simply cannot be implemented in climate models," Nenes said. "We don't have enough computing power -- and probably won't for another 50 years. Yet somehow we still need to describe cloud formation accurately if we want to understand how humans are affecting climate."

To address the lack of computer power and shortcomings of existing parameterization, Nenes and his research team have developed simple, physics-based equations that link aerosol particles and cloud droplets. Then these equations can be scaled up to a global level, providing accurate predictions thousands of times faster than more detailed models.

This modeling method has proven successful in two field tests. Data was collected from aircraft flying through from cumulus clouds off the coast of Key West, Fla., in 2002, and from stratocumulus clouds near Monterey, Calif., in 2003. Compared with this real-world data, predictions from Nenes' model were accurate within 10 to 20 percent.

"We never expected to capture the physics to that degree," Nenes explained. "We were hoping for a 50 percent accuracy rate."

Another challenge in predicting climate change is to understand how aerosols' chemistry affects cloud formation. Each particle has a different potential for forming a cloud droplet, which depends on its composition, location and how long it has been in the atmosphere. Until now, people have measured and averaged properties over long periods of time. "Yet particles are mixing and changing quickly," Nenes said. "If you don't factor in the chemical aging of the aerosol, you can easily have a large error when predicting cloud droplet number."

Working with Gregory Roberts at the Scripps Institution of Oceanography, Nenes developed a new type of cloud condensation nuclei (CCN) counter. This instrument exposes different aerosol particles to supersaturation, which enables researchers to determine: 1) how many droplets form and 2) how long they take to form.

Providing fast, reliable measurements, the CCN counter can be used on the ground or in an aircraft. "It gives us a much needed link for determining how different types of emissions will affect clouds formation," Nenes explained.

Nenes and Roberts have patented the CCN instrument, and a paper describing the technology will be published in an upcoming issue of the journal Aerosol Science and Technology.

The new modeling method and CCN instrument have far-reaching applications for predicting climate change and precipitation patterns, the scientists believe.

The indirect aerosol effect is counteracting greenhouse warming now, but will stop at some point, Nenes explained. "One of our goals is to figure out how long we'll have this cooling effect so we can respond to changes."
-end-
NSF Program Contact: Jay Fein, jfein@nsf.gov, 703-292-8420

The National Science Foundation is an independent federal agency that supports fundamental research and education across all fields of science and engineering, with an annual budget of nearly $5.47 billion. NSF funds reach all 50 states through grants to nearly 2,000 universities and institutions. Each year, NSF receives about 30,000 competitive requests for funding, and makes about 10,000 new funding awards. The National Science Foundation also awards over $200 million in professional and service contracts yearly.

Useful National Science Foundation Web Sites:
NSF Home Page: http://www.nsf.gov
News Highlights: http://www.nsf.gov/od/lpa
Newsroom: http://www.nsf.gov/od/lpa/news/media/start.htm
Science Statistics: http://www.nsf.gov/sbe/srs/stats.htm
Awards Searches: http://www.fastlane.nsf.gov/a6/A6Start.htm

National Science Foundation

Related Climate Change Articles from Brightsurf:

Are climate scientists being too cautious when linking extreme weather to climate change?
Climate science has focused on avoiding false alarms when linking extreme events to climate change.

Mysterious climate change
New research findings underline the crucial role that sea ice throughout the Southern Ocean played for atmospheric CO2 in times of rapid climate change in the past.

Mapping the path of climate change
Predicting a major transition, such as climate change, is extremely difficult, but the probabilistic framework developed by the authors is the first step in identifying the path between a shift in two environmental states.

Small change for climate change: Time to increase research funding to save the world
A new study shows that there is a huge disproportion in the level of funding for social science research into the greatest challenge in combating global warming -- how to get individuals and societies to overcome ingrained human habits to make the changes necessary to mitigate climate change.

Sub-national 'climate clubs' could offer key to combating climate change
'Climate clubs' offering membership for sub-national states, in addition to just countries, could speed up progress towards a globally harmonized climate change policy, which in turn offers a way to achieve stronger climate policies in all countries.

Review of Chinese atmospheric science research over the past 70 years: Climate and climate change
Over the past 70 years since the foundation of the People's Republic of China, Chinese scientists have made great contributions to various fields in the research of atmospheric sciences, which attracted worldwide attention.

A CERN for climate change
In a Perspective article appearing in this week's Proceedings of the National Academy of Sciences, Tim Palmer (Oxford University), and Bjorn Stevens (Max Planck Society), critically reflect on the present state of Earth system modelling.

Fairy-wrens change breeding habits to cope with climate change
Warmer temperatures linked to climate change are having a big impact on the breeding habits of one of Australia's most recognisable bird species, according to researchers at The Australian National University (ANU).

Believing in climate change doesn't mean you are preparing for climate change, study finds
Notre Dame researchers found that although coastal homeowners may perceive a worsening of climate change-related hazards, these attitudes are largely unrelated to a homeowner's expectations of actual home damage.

Older forests resist change -- climate change, that is
Older forests in eastern North America are less vulnerable to climate change than younger forests, particularly for carbon storage, timber production, and biodiversity, new research finds.

Read More: Climate Change News and Climate Change Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.