NASA eyes ice changes around Earth's frozen caps

December 14, 2004

At 32 degrees Fahrenheit, or 0 Celsius, ice changes to water. This simple, unique fact dominates the climate in Earth's polar regions. Using satellites to detect changes over time, NASA researchers and NASA-funded university scientists have found that Earth's ice cover is changing rapidly near its poles. Recent studies point to new evidence of relationships between climate warming, ice changes and sea level rise.

Two researchers from NASA Goddard Space Flight Center (GSFC), Greenbelt, Md., and a glaciologist from the University of Colorado's National Snow and Ice Data Center, Boulder, Colo., will discuss new findings related to Earth's ice cover at a press conference on Dec. 14 at the 2004 meeting of the American Geophysical Union in San Francisco, Calif.

Waleed Abdalati, a NASA GSFC researcher, has worked with colleagues on a slew of recent papers on glaciers and ice sheets in the Northern Hemisphere. Bill Krabill of NASA Wallops Space Flight Center, Wallops Island, Va., Abdalati and others calculated that Greenland's contributions to sea level rise nearly doubled in recent years, from 0.13 millimeters (mm) (.005 inches) per year in the mid 1990s, to 0.25 mm (.01 inches) per year from 1997 to 2003. Krabill's study measured steady thinning in the region's lower elevations near the coasts.

A recent NASA paper in Nature found that the world's fastest glacier, called the Jakobshavn Isbrae, nearly doubled its speed from 1997 to 2003. The speedy ice stream's quickening coincided with a break up of the floating ice that extends from the glacier out into the ocean, called an ice tongue. In 2003, this one glacier added to the world's oceans an amount of water equal to about 4 percent of the estimated rate of sea level rise.

Abdalati also published a paper in the Journal of Geophysical Research assessing the contributions of the Canadian ice caps to sea level rise. During the late 1990s they contributed an estimated 0.065 mm (0.002 inches) per year, which, while not as large as those of Greenland and neighboring Alaska, is still quite significant. Perhaps more significant is the fact that like Greenland and Alaska the rate of ice loss appears to have accelerated in recent years.

Meanwhile, the Arctic Ocean's perennial sea ice, or the sea ice that lasts all year long, continues to decline. Floating sea ice blankets the ocean surface, and does not contribute to sea level rise. But it is an important part of the climate system because the expansive white ice reflects the sun's heating rays, prevents the oceans beneath it from absorbing more heat, influences ocean circulation, and regulates Earth's climate. Between 2002 and 2004, Arctic sea ice has been exceptionally low. 2002 set a record for the lowest amount of late summer sea ice since satellite measurements of the area began in 1978. Josefino Comiso of NASA's GSFC reported that between 1978 and 2000, the Arctic perennial sea ice declined by 8.9 percent per decade. The trend is now 9.2 percent per decade. These low levels continue to be sustained in 2003 and 2004.

While a few abnormally cold summers would help sea ice survive the summer melt, Comiso's studies have found that on average, during the past 22 years, the Arctic warming rate is about 8 times higher than estimates of warming rates over the last 100 years.

In much of the Antarctic, a general cooling has been observed and sea ice has mostly increased over the last 30 years but the Antarctic Peninsula has been an exception since it has warmed and similar rapid changes as those found in the northern hemisphere have been observed.

For example, in the eastern Antarctic Peninsula, very rapid climate warming began in the 1950s, causing mean temperatures to increase by about 2.5 degrees Celsius (4.5 Fahrenheit), according to Scambos. As temperatures have warmed, land and sea ice have melted. In March 2002, the Rhode-Island-sized Larsen B ice shelf collapsed, the largest in a series of such retreats that began to take place around 1985 and have steadily increased.

In the aftermath of this collapse, two NASA studies, one led by Scambos, showed that glaciers flowing into the bay areas behind the Larsen 'B' ice shelf accelerated by 3- to 8-fold in just 18 months after the breakup. This finding points to similar mechanisms as those discovered by Abdalati and colleagues in Greenland's Jakobshavn ice stream. Satellite images revealed that the Antarctic glaciers' speed-up began almost immediately after the collapse of the shelf. Data from NASA's new ICESat satellite indicate that the trunk of one glacier decreased in elevation by over 30 meters in just six months.
-end-


NASA/Goddard Space Flight Center

Related Sea Ice Articles from Brightsurf:

2020 Arctic sea ice minimum at second lowest on record
NASA and the National Snow and Ice Data Center (NSIDC) at the University of Colorado Boulder shows that the 2020 minimum extent, which was likely reached on Sept.

Sea ice triggered the Little Ice Age, finds a new study
A new study finds a trigger for the Little Ice Age that cooled Europe from the 1300s through mid-1800s, and supports surprising model results suggesting that under the right conditions sudden climate changes can occur spontaneously, without external forcing.

How much will polar ice sheets add to sea level rise?
Over 99% of terrestrial ice is bound up in the ice sheets covering Antarctic and Greenland.

A snapshot of melting Arctic sea ice during the summer of 2018
A study appearing July 29 in the journal Heliyon details the changes that occurred in the Arctic in September of 2018, a year when nearly 10 million kilometers of sea ice were lost throughout the summer.

Antarctic penguins happier with less sea ice
Researchers have been surprised to find that Adélie penguins in Antarctica prefer reduced sea-ice conditions, not just a little bit, but a lot.

Seasonal sea ice changes hold clues to controlling CO2 levels, ancient ice shows
New research has shed light on the role sea ice plays in managing atmospheric carbon dioxide levels.

Artificial intelligence could revolutionize sea ice warnings
Today, large resources are used to provide vessels in the polar seas with warnings about the spread of sea ice.

Antarctic sea ice loss explained in new study
Scientists have discovered that the summer sea ice in the Weddell Sea sector of Antarctica has decreased by one million square kilometres -- an area twice the size of Spain -- in the last five years, with implications for the marine ecosystem.

Antarctic sea-ice models improve for the next IPCC report
All the new coupled climate models project that the area of sea ice around Antarctica will decline by 2100, but the amount of loss varies considerably between the emissions scenarios.

Earth's glacial cycles enhanced by Antarctic sea-ice
A 784,000 year climate simulation suggests that Southern Ocean sea ice significantly reduces deep ocean ventilation to the atmosphere during glacial periods by reducing both atmospheric exposure of surface waters and vertical mixing of deep ocean waters; in a global carbon cycle model, these effects led to a 40 ppm reduction in atmospheric CO2 during glacial periods relative to pre-industrial level, suggesting how sea ice can drive carbon sequestration early within a glacial cycle.

Read More: Sea Ice News and Sea Ice Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.