Portable sampling cart monitors emissions from wood-burning cookstoves

December 14, 2004

CHAMPAIGN, Ill. -- A new method of measuring emissions from cookstoves could help improve human health and enhance the accuracy of global climate models.

Wood-fueled cooking stoves are commonly used in Central America and other Third World nations. Producing copious amounts of noxious smoke, the stoves can be detrimental to human health. Lack of knowledge about the characteristics and quantities of emissions from millions of these modified campfires is a major contributor to uncertainties in global emission inventories of particulate matter.

To improve the measurement and characterization of emissions from wood-fueled cookstoves, researchers at the University of Illinois at Urbana-Champaign have designed and built a portable, battery-operated sampling cart. The inexpensive and mobile monitoring system can be taken to remote locations to better evaluate emission sources.

"We have established working relationships with non-profit organizations in the United States and in developing countries that afford us access to ongoing measurements of both traditional and improved wood-burning cookstoves," said Tami Bond, a professor of civil and environmental engineering. "These partnerships form the foundation for achieving a positive impact on both human health and the environment."

In the past, field measurements were difficult to obtain for many reasons, including limited access to remote sites and the lack of power to operate equipment. While cooking fires have been replicated and measured in laboratory settings, the results may not represent actual cooking practices.

"To be accurate, we really need to measure while food is being cooked," said graduate student Christoph Roden. "We need to record how much fuel is consumed, and we need to examine the type, size and condition of the wood that is burned."

The sampling cart carries sensors for measuring carbon dioxide and carbon monoxide, a particle soot absorption photometer for measuring particle color, a nephelometer for measuring particle concentration, and two filters for collecting particles for later analysis. A battery-operated power supply and data-acquisition system complete the design.

In collaboration with two nonprofit agencies -- Trees, Water and People (based in the United States) and AHDESA (the Honduran Association for Development) -- Bond and Roden took their sampling cart to Honduras, where for two weeks they measured emissions from a number of traditional cookstoves. The researchers are now comparing their field measurements with previous laboratory studies, and examining the implications upon human health and global climate modeling.

"Scientists have been assuming certain properties of particles based on testing performed in laboratories," Roden said. "We are finding, however, that the properties really depend upon the conditions under which the wood is burned, and those properties in turn affect the climate differently."

Particle characteristics depend, for example, upon whether the fire is flaming or smoldering. Wood size also makes a big difference. Because larger pieces don't heat up as fast, more volatile material can be released over longer periods. The bottom line, Roden said, is that not much testing has been performed on the kinds of traditional technology that emit most of the particles in the atmosphere. Much more work needs to be done.

"This was a pilot program and provided a baseline study on emissions," Bond said. "Improved, fuel-efficient and pollutant-reducing cookstoves have been developed and are being distributed throughout villages in Honduras by the nonprofits that we work with. We will return next summer to measure and compare the emissions from the new stoves."

The researchers described their sampling cart and presented early results at the American Geophysical Union meeting in San Francisco.
-end-
Funding was provided by the National Science Foundation and the Partnership for Clean Indoor Air.

University of Illinois at Urbana-Champaign

Related Emissions Articles from Brightsurf:

Multinationals' supply chains account for a fifth of global emissions
A fifth of carbon dioxide emissions come from multinational companies' global supply chains, according to a new study led by UCL and Tianjin University that shows the scope of multinationals' influence on climate change.

A new way of modulating color emissions from transparent films
Transparent luminescent materials have several applications; but so far, few multicolor light-emitting solid transparent materials exist in which the color of emission is tunable.

Can sunlight convert emissions into useful materials?
A team of researchers at the USC Viterbi School of Engineering has designed a method to break CO2 apart and convert the greenhouse gas into useful materials like fuels or consumer products ranging from pharmaceuticals to polymers.

Methane: emissions increase and it's not a good news
It is the second greenhouse gas with even a global warming potential larger than CO2.

Tracking fossil fuel emissions with carbon-14
Researchers from NOAA and the University of Colorado have devised a breakthrough method for estimating national emissions of carbon dioxide from fossil fuels using ambient air samples and a well-known isotope of carbon that scientists have relied on for decades to date archaeological sites.

COVID-19 puts brakes on global emissions
Carbon dioxide emissions from fossil fuel sources reached a maximum daily decline of 17 per cent in April as a result of drastic decline in energy demand that have occurred during the COVID-19 pandemic.

Egregious emissions
Call them 'super polluters' -- the handful of industrial facilities that emit unusually high levels of toxic chemical pollution year after year.

Continued CO2 emissions will impair cognition
New CU Boulder research finds that an anticipated rise in carbon dioxide concentrations in our indoor living and working spaces by the year 2100 could lead to impaired human cognition.

Capturing CO2 from trucks and reducing their emissions by 90%
Researchers at EPFL have patented a new concept that could cut trucks' CO2 emissions by almost 90%.

Big trucks, little emissions
Researchers reveal a new integrated, cost-efficient way of converting ethanol for fuel blends that can reduce greenhouse gas emissions.

Read More: Emissions News and Emissions Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.