Researchers identify genes that allow brain cancer-causing stem cells to resist treatment

December 14, 2006

LOS ANGELES (Dec. 14, 2006) -- While great interest has followed the discovery of neural stem cells and their potential for someday treating diseases and injuries of the brain and spinal cord, recent research identified "cancer stem cells," a small population of cells that appear to be the source of cells comprising a malignant brain tumor. Theoretically, if these mother cells can be destroyed, the tumor will not be able to sustain itself. On the other hand, if these cells are not removed or destroyed, the tumor will continue to return despite the use of current cancer-killing therapies.

Researchers at Cedars-Sinai Medical Center's Maxine Dunitz Neurosurgical Institute, who first isolated cancer stem cells in adult brain tumors in 2004, have now found these cells to be highly resistant to chemotherapy and other treatments. Even if a tumor is almost completely obliterated, it will regenerate from the surviving cancer stem cells and be even more resistant to treatment than before.

Results of studies on three established glioma cell lines and tumor tissue removed from five patients at Cedars-Sinai appear in the Dec. 2 issue of the journal Molecular Cancer. The researchers describe genes and mechanisms that give cancer stem cells their chemoresistant properties. They also allude to ongoing research aimed at developing methods for readily distinguishing cancer stem cells from normal neural stem cells, which could lead to therapies targeting the cancer-causing cells without damaging healthy ones.

"If one believes in the cancer stem cell hypothesis, this is an extremely important area of investigation. These stem cells are like the mother cells of the tumor, which I think is a very significant observation. It may guide the way we research tumors and the way we look for therapeutic approaches to treat these tumors because all of our efforts will need to be directed at killing these cells," said Keith L. Black, M.D., neurosurgeon, director of the Maxine Dunitz Neurosurgical Institute and chair of Cedars-Sinai's Department of Neurosurgery.

Cancer stem cells were first found in certain leukemias and in breast carcinomas. In 2004, shortly after cancer stem cells were identified in pediatric brain tumors, researchers at Cedars-Sinai's Institute reported the first isolation of cancer stem cells in adult brain tumors.

"Gliomas that are treated with chemotherapy recur with renewed resilience and aggression. Although the drugs kill most of the cells in the tumor, cancer stem cells may be left behind. In this study, we provide the first evidence that cancer stem cells have a significant resistance to conventional chemotherapeutic agents. We also link this resistance to genes that are known to inhibit a cell death process called apoptosis," said neurosurgeon John S. Yu, M.D., co-director of the Comprehensive Brain Tumor Program at Cedars-Sinai and senior author of the journal article.

Normal stem cells are "immature" cells that have the potential to become any of several types of cells. Cancer stem cells have the same multi-potent and self-renewing properties, but instead of producing healthy cells, they propagate cancer cells.

Part of the study included a comparison of cells taken from patients' primary (first-onset) tumors with cells taken from recurring tumor after radiation, chemotherapy and/or immunotherapy. In each of the five cases examined, the recurrent tumors contained much higher concentrations of cancer stem cells, indicating that while many tumor cells may have died, treatment-resistant "source" cells survived and regenerated.

Another finding suggests that cancer stem cells are responsible not only for regeneration of tumor cells but also encourage their migration. Gliomas are extremely difficult to treat because they evade treatment and because they are highly invasive.

"The identification and study of brain cancer stem cells is providing insight into the way tumors form and grow," said Yu. "This may be a major step toward designing therapies that use brain cancer stem cells as a target, not only to destroy a tumor but to prevent it from coming back."
-end-
The study was funded by grants from the National Institutes of Health.

Citation: Molecular Cancer, Dec. 2, 2006, "Analysis of Gene Expression and Chemoresistance of CD133+ Cancer Stem Cells in Glioblastoma."

Cedars-Sinai Medical Center

Related Stem Cells Articles from Brightsurf:

SUTD researchers create heart cells from stem cells using 3D printing
SUTD researchers 3D printed a micro-scaled physical device to demonstrate a new level of control in the directed differentiation of stem cells, enhancing the production of cardiomyocytes.

More selective elimination of leukemia stem cells and blood stem cells
Hematopoietic stem cells from a healthy donor can help patients suffering from acute leukemia.

Computer simulations visualize how DNA is recognized to convert cells into stem cells
Researchers of the Hubrecht Institute (KNAW - The Netherlands) and the Max Planck Institute in Münster (Germany) have revealed how an essential protein helps to activate genomic DNA during the conversion of regular adult human cells into stem cells.

First events in stem cells becoming specialized cells needed for organ development
Cell biologists at the University of Toronto shed light on the very first step stem cells go through to turn into the specialized cells that make up organs.

Surprising research result: All immature cells can develop into stem cells
New sensational study conducted at the University of Copenhagen disproves traditional knowledge of stem cell development.

The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.

Healthy blood stem cells have as many DNA mutations as leukemic cells
Researchers from the Princess Máxima Center for Pediatric Oncology have shown that the number of mutations in healthy and leukemic blood stem cells does not differ.

New method grows brain cells from stem cells quickly and efficiently
Researchers at Lund University in Sweden have developed a faster method to generate functional brain cells, called astrocytes, from embryonic stem cells.

NUS researchers confine mature cells to turn them into stem cells
Recent research led by Professor G.V. Shivashankar of the Mechanobiology Institute at the National University of Singapore and the FIRC Institute of Molecular Oncology in Italy, has revealed that mature cells can be reprogrammed into re-deployable stem cells without direct genetic modification -- by confining them to a defined geometric space for an extended period of time.

Researchers develop a new method for turning skin cells into pluripotent stem cells
Researchers at the University of Helsinki, Finland, and Karolinska Institutet, Sweden, have for the first time succeeded in converting human skin cells into pluripotent stem cells by activating the cell's own genes.

Read More: Stem Cells News and Stem Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.