JCI table of contents: December 14, 2006

December 14, 2006

EDITOR'S PICK: Antioxidants decrease disease in a Drosophila model of Alzheimer's disease

Alzheimer's disease (AD) is one of a number of neurodegenerative disorders in which brain cells damaged by naturally occurring chemicals known as reactive oxygen species (ROS) have been observed. However, whether this oxidative damage causes neurodegeneration or is a consequence of it has not been previously determined. A study appearing online on December 14, in advance of publication in the January print issue of the Journal of Clinical Investigation, indicates that oxidative damage is a factor contributing to neurodegeneration in a Drosophila model of neurodegenerative disorders such as AD.

Mel Feany and colleagues from Brigham and Women's Hospital and Harvard Medical School assessed neuron cell death in Drosophila expressing a neurodegenerative disease-associated form of the human protein tau. The number of dying neurons was increased if these insects were also genetically modified to have high levels of ROS. By contrast, if the insects were treated with the antioxidant vitamin E they had decreased numbers of dying neurons. This demonstration that oxidative stress contributes to neurodegeneration in this model of AD suggests that targeting antioxidant pathways might provide a new approach for treating individuals with AD and other related neurodegenerative disorders.

TITLE: Oxidative stress mediates tau-induced neurodegeneration in Drosophila.

Mel B. Feany
Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA.
Phone: (617) 525-4405; Fax: (617) 525-4422; E-mail: mel_feany@hms.harvard.edu.

View the PDF of this article at: https://www.the-jci.org/article.php?id=28769

BONE BIOLOGY: IFN-gamma tips towards bone destruction

The soluble factor IFN-gamma has been shown to both promote and inhibit bone destruction, but the mechanisms by which it mediates these opposing effects and which effect predominates in vivo have not been clearly established. Using mice, researchers from Emory University have shown that in vitro, IFN-gamma directly inhibits the differentiation of cells that destroy bone (osteoclasts) and indirectly promotes their differentiation. In this study, which appears online on December 14 in advance of publication in the January print issue of the Journal of Clinical Investigation, Roberto Pacifici and colleagues further demonstrated that the in vitro indirect effects of IFN-gamma were a result of this soluble factor increasing the activity of APCs, thereby increasing T cell activation and production of the pro-osteoclastogenic factors RANKL and TNF-alpha. Importantly, the bone destroying effects of IFN-gamma were found to predominate in vivo in 3 distinct models of bone loss (osteoporosis). It is therefore possible that targeting IFN-gamma might provide a new approach to prevent bone loss in individuals with osteoporosis.

TITLE: IFN-gamma stimulates osteoclast formation and bone loss in vivo via antigen-driven T cell activation

Roberto Pacifici
Emory University, Atlanta, Georgia, USA.
Phone: (404) 712-8420; Fax: (404) 727-1300; E-mail: roberto.pacifici@emory.edu.

View the PDF of this article at: https://www.the-jci.org/article.php?id=30074

ONCOLOGY: A new way to stop FoxM1 promoting tumor growth

The initiation of tumors in the liver of mice using a combination of toxic chemicals has previously been shown to require a protein known as FoxM1. In a study using the same mouse model of liver cancer, which appears online on December 14 in advance of publication in the January print issue of the Journal of Clinical Investigation, researchers from the University of Illinois at Chicago show that FoxM1 is also required for tumor cell growth, making it a potential therapeutic target for the treatment of liver cancer.

Galina Gusarova and colleagues showed that deletion of the mouse gene encoding FoxM1 after tumors had formed but while tumors were still growing, caused a substantial decrease in the number of tumors in the liver. A similar decrease was observed when mice with pre-existing tumors were treated with a cell-penetrating peptide inhibitor of FoxM1, ARF26-44. Further analysis showed that ARF26-44 treatment increased tumor cell death by a process known as apoptosis and decreased tumor cell proliferation. Importantly, ARF26-44 treatment affected only the tumor cells, and not the normal liver tissue, leading the authors to conclude that ARF26-44 is an effective therapeutic approach to limit the progression of liver cancer in mice. Further studies will be required to determine whether this approach is viable for the treatment of human liver cancer.

TITLE: A cell-penetrating ARF peptide inhibitor of FoxM1 in mouse hepatocellular carcinoma treatment

Galina A. Gusarova
University of Illinois at Chicago, Chicago, Illinois, USA.
Phone: (312) 996-6994; Fax: (312) 355-4010; E-mail: gusarova@uic.edu.

View the PDF of this article at: https://www.the-jci.org/article.php?id=27527

JCI Journals

Related Liver Cancer Articles from Brightsurf:

Eating less suppresses liver cancer due to fatty liver
Liver cancer from too much fat accumulation in the liver has been increasing in many countries including Japan.

New liver cancer research targets non-cancer cells to blunt tumor growth
'Senotherapy,' a treatment that uses small molecule drugs to target ''senescent'' cells, or those cells that no longer undergo cell division, blunts liver tumor progression in animal models according to new research from a team led by Celeste Simon, PhD, a professor of Cell and Developmental Biology in the Perelman School of Medicine at the University of Pennsylvania and scientific director of the Abramson Family Cancer Research Institute.

Liver cancer: Awareness of hepatitis D must be raised
Scientists from the University of Geneva (UNIGE) and the Geneva University Hospitals (HUG) have studied the most serious consequence of chronic hepatitis: hepatocellular carcinoma.

A new treatment for liver cancer
In the latest issue of Molecular Therapy, Skoltech and MIT researchers have published a new combinatorial therapy for the treatment of liver cancer.

New study indicates exercise can help prevent liver cancer
Liver cancer is the fourth most common cause of cancer death worldwide and is growing rapidly due to the 'diabesity pandemic.' A new study reported in the Journal of Hepatology, published by Elsevier, provides strong evidence that voluntary exercise could help prevent the most common type of liver cancer, hepatocellular carcinoma, and identifies the molecular signaling pathways involved.

From obesity to liver cancer: Can we prevent the worst?
Hepatocellular carcinoma, a liver cancer linked to the presence of fat in the liver, is one of the leading causes of cancer death worldwide.

Liver cancer deaths climb by around 50% in the last decade
Liver cancer deaths have increased by around 50% in the last decade and have tripled since records began, according to the latest calculations by Cancer Research UK.

NUS researchers show potential liver cancer treatment by targeting cancer stem-like cells
NUS researchers from the Cancer Science Institute of Singapore and the N.1 Institute for Health have shown the potential use of small molecule inhibitors to treat advanced liver cancer.

Breast cancer gene a potential target for childhood liver cancer treatment
Hepatoblastoma is a rare liver cancer that mainly affects infants and young children and is associated with mutations in the β-catenin gene.

Blood transfusion during liver cancer surgery linked with higher risk of cancer recurrence and death
Receiving a blood transfusion during curative surgery for the most common type of liver cancer (hepatocellular carcinoma) is associated with a much higher risk of cancer recurrence and dying prematurely, according to new research being presented at this year's Euroanaesthesia congress.

Read More: Liver Cancer News and Liver Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.