How molecular muscles help cells divide

December 14, 2007

New Haven, Conn. -- Time-lapse videos and computer simulations provide the first concrete molecular explanation of how a cell flexes tiny muscle-like structures to pinch itself into two daughter cells at the end of each cell division, according to a report in Science Express.

Cell biologists at Yale and physicists at Columbia teamed up to model and then observe the way a cell assembles the "contractile ring," the short-lived force-producing structure that physically divides cells and is always located precisely between the two daughter cell nuclei.

"This contractile ring is thought to operate like an old-fashioned purse string," said senior author Thomas D. Pollard, Sterling Professor and Chair of the Department of Molecular, Cellular & Developmental Biology at Yale. "It constricts the cell membrane into a cleavage furrow that eventually pinches the cell in two."

Living cells divide into two daughter cells to reproduce themselves. In one-celled organisms like yeast, each cell division yields a new creature. In humans and other multicellular species, cell division creates an adult from an embryo. In fully developed adults, it provides necessary replacements for cells that are continuously dying in the course of natural wear and tear.

Scientists have long studied aspects of how cells actually make this division -- the structure of the cellular machinery, how it assembles and how the machine works. Since the 1970s, it has been known that the contractile ring is made up of muscle-like actin and myosin -- contractile proteins that are involved a process in some ways similar to the muscle contraction used to move arms or legs. However, there was no plausible mechanism to explain how it worked.

"We found that fission yeast cells assemble their contractile ring using a 'search, capture, pull and release' mechanism," said Pollard. "This is important because it shows for the first time how the contractile machinery assembles and how all the pieces get to the right place to get the job done."

Time-lapse imaging and computer modeling demonstrated that cells undergoing mitosis set up small clusters of proteins, or nodes, on the inside of the cell membrane around the equator of the cell. Proteins in these nodes begin to put out a small number of filaments composed of the protein actin. The filaments grow in random directions until they encounter another node, where myosin motors in the contacted node pull on the actin filament, bringing the two nodes together.

However, the researchers found that each connection is broken in about 20 seconds. Releasing the connections and initiating subsequent rounds of "search and capture" appears essential to the assembly process, say the scientists. The assembly involves many episodes of attractions between pairs of nodes proceeding in parallel. Eventually the nodes form into a condensed contractile ring around the equator, ready to pinch the mother into two daughters at a later stage.

"A novel and important aspect of this work was that we used computer simulations at every step to test what is feasible physically and to guide our experiments," said author Ben O'Shaughnessy, professor of chemical engineering at Columbia. "The simulations show that cells use reaction rates that are nearly ideal to make this mechanism work on the time scale of the events in the cells."

"Future work will involve testing the concepts learned from fission yeast in other cells to learn if the mechanism is universal," said Pollard. "Since other cells, including human cells, depend on similar proteins for cytokinesis [cell division], it is entirely possible that they use the same strategy."
-end-
Other authors on the paper were Dimitrios Vavylonis at Columbia, Yale and Lehigh University; Jian-Qui Wu and Steven Hao at Yale. The work was supported by research grants from the National Institutes of Health.

Citation: Science Express: (December 13, 2007).

Yale University

Related Cell Division Articles from Brightsurf:

Cell division: Cleaning the nucleus without detergents
A team of researchers, spearheaded by the Gerlich lab at IMBA, has uncovered how cells remove unwanted components from the nucleus following mitosis.

Genetic signature boosts protein production during cell division
A research team has uncovered a genetic signature that enables cells to adapt their protein production according to their state.

Inner 'clockwork' sets the time for cell division in bacteria
Researchers at the Biozentrum of the University of Basel have discovered a 'clockwork' mechanism that controls cell division in bacteria.

Scientists detail how chromosomes reorganize after cell division
Researchers have discovered key mechanisms and structural details of a fundamental biological process--how a cell nucleus and its chromosomal material reorganizes itself after cell division.

Targeting cell division in pancreatic cancer
Study provides new evidence of synergistic effects of drugs that inhibit cell division and support for further clinical trials.

Scientists gain new insights into the mechanisms of cell division
Mitosis is the process by which the genetic information encoded on chromosomes is equally distributed to two daughter cells, a fundamental feature of all life on earth.

Cell division at high speed
When two proteins work together, this worsens the prognosis for lung cancer patients: their chances of survival are particularly poor in this case.

Cell biology: The complexity of division by two
Ludwig-Maximilians-Universitaet (LMU) in Munich researchers have identified a novel protein that plays a crucial role in the formation of the mitotic spindle, which is essential for correct segregation of a full set of chromosomes to each daughter cell during cell division.

Better together: Mitochondrial fusion supports cell division
New research from Washington University in St. Louis shows that when cells divide rapidly, their mitochondria are fused together.

Seeing is believing: Monitoring real time changes during cell division
Scientist have cast new light on the behaviour of tiny hair-like structures called cilia found on almost every cell in the body.

Read More: Cell Division News and Cell Division Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.