DNA needs a good editor

December 14, 2009

Imagine a huge spool of film containing thousands of sequences of random scenes. Without a talented editor, a screening would have no meaning.

The RNA "spools" that make up DNA in our genes need careful editing, too. Genes are composed of meaningful sequences, called exons, separated by meaningless junk sections called introns. In order for cells to produce RNA -- the material that is required to create proteins that are vital for life -- they must precisely remove meaningless introns and bind meaningful exons together, a process called "splicing".

How cells differentiate between what's useful and what's garbage in our complicated and messy genetic code is a fundamental biology question -- one with extremely important implications. Now, Prof. Gil Ast and his doctoral student Schraga Schwartz at the Sackler School of Medicine at Tel Aviv University are successfully finding answers.

Their groundbreaking findings, recently published in Nature Structural and Molecular Biology, reveal a new mechanism to explain how splicing works. They've discovered that the structure of DNA itself affects the ways RNA is spliced. "These findings," says Prof. Ast, "will bring us closer to understanding diseases like cystic fibrosis and certain forms of cancer that result from our cells' failure to edit sequences properly."

Rewriting textbook science on DNA

Until now, how RNA was "edited" to fit together has been a mystery. The Tel Aviv University revelations provide important information about creating proteins, and give new clues to drug developers to better understand how diseases such as cancer and genetic disorders operate at the gene level. That insight can offer significant new cellular mechanisms to create innovative drug therapies

"We've found something previously unknown," Prof. Ast explains. "At the DNA level, exons are packaged differently than introns. This fact is significant, telling us a process of gene expression is taking place at an earlier step than previously believed." This can give new clues to scientists seeking to detect and diagnose diseases before they erupt, he believes.

Take cancer, for example. In cancerous cells especially, DNA itself is structured differently than in non-cancer cells. These structures may change the way RNA is edited, leading to different joining together of exons, and therefore to different proteins, explains Prof. Ast. His lab is concurrently investigating new drug platforms to take advantage of this new biological discovery which could lead to an entirely new class of drugs.

New hope for rare genetic diseases

"We've been working on a compound, and are trying to understand how these structural marks vary between normal and cancer cells. If we can understand how the processing of RNA is different in diseased cells, we will hopefully find something that can change it," he explains.

In rare and common genetic disorders, and diseases like cancer, there are different ways in which the DNA machinery produces non-functioning or damaging proteins. Genes are made from exons, but not all exons are necessarily used to produce mature RNA, Prof. Ast explains.

Sometimes genes might skip an exon for mysterious reasons: "If you skip at the wrong place, this will lead to the production of a non-productive, or even damaging, protein instead of normal proteins. This is like building a skyscraper with faulty steel beams. A big no-no."

Prof. Ast's new observations have shown that many cellular mutations are changing the gene splicing mechanism, an area that should be targeted in drug development. If drugs can target the mechanism that causes diseases, he hopes they will be able to halt the progression of the disease.
-end-
American Friends of Tel Aviv University (www.aftau.org) supports Israel's leading and most comprehensive center of higher learning. In independent rankings, TAU's innovations and discoveries are cited more often by the global scientific community than all but 20 other universities worldwide.

Internationally recognized for the scope and groundbreaking nature of its research programs, Tel Aviv University consistently produces work with profound implications for the future.

American Friends of Tel Aviv University

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.