IUPUI researchers tackle protein mechanisms behind limb regeneration

December 14, 2009

INDIANAPOLIS - The most comprehensive study to date of the proteins in a species of salamander that can regrow appendages may provide important clues to how similar regeneration could be induced in humans.

Researchers at the School of Science at Indiana University-Purdue University Indianapolis and colleagues investigated over three hundred proteins in the amputated limbs of axolotls, a type of salamander that has the unique natural ability to regenerate appendages from any level of amputation, with the hope that this knowledge will contribute to a better understanding of the mechanisms that allow limbs to regenerate. Their findings were published online in the journal Biomedical Central Biology on November 30 (BMC Biology 7:83, 2009).

"In some ways this study of the axoltol's proteins was a fishing expedition. Fishing expedition can be a derogatory term in biology but for us it was positive, since we caught some important "fish" that enable us to formulate hypotheses as to how limb regeneration occurs," said David L. Stocum, Ph.D., professor of biology and director of the Indiana University Center for Regenerative Biology and Medicine, both in the School of Science at IUPUI, who led the study.

"Comparison of these proteins to those expressed in the amputated frog limb, which regenerates poorly, will hopefully allow us to determine how we might enhance limb regeneration in the frog and ultimately in humans, Dr. Stocum said.

With few exceptions - notably the antlers of moose, deer and their close relatives, the tips of the fingers and toes of humans and rodents, and the ear tissue of certain strains of mice and rabbits - the appendages of mammals do not regenerate after amputation.

Limb regeneration in the axolotl occurs when undifferentiated cells accumulate under the wound epidermis at the amputation site, a process known as the establishment of a blastema. These cells are derived by the reprogramming of differentiated cells to a less specialized state, and from resident stem cells.

"We found proteins that point to several areas that need to be studied closely to give us vital information about the mechanisms that operate to form a blastema that then goes on to regenerate the missing parts of the limb," said Dr. Stocum, an internationally respected cell and developmental biologist who has studied limb regeneration for over three decades.

Investigating the proteins found in the axolotl limb, the researchers noted three findings that appear to have significance in reprogramming cells to grow new limbs:

  1. Quantities of enzymes involved in metabolism decreased significantly during the regeneration process.
  2. There were many proteins that helped cells avoid cell death. Because amputation is very traumatic, this is critical.
  3. A protein which appears to keep cells from dividing until they are fully dedifferentiated and reprogrammed to begin forming a new limb was expressed at high levels throughout blastema formation.
-end-
Co-authors of the study, which was funded by the W. M. Keck Foundation, are Nandini Rao, Ph.D. and graduate student Behnaz Saranjami of the School of Science; graduate student Deepali Jhamb and Mathew Palakal, Ph.D. of the IU School of Informatics; Fengyu Song, D.D.S., M.S., Ph.D. of the IU School of Dentistry; Mu Wang, Ph.D. and Michael W. King, Ph.D. of the IU School of Medicine; Bingbing Li, Ph.D. of Central Michigan University; S. Randal Voss, Ph.D. of the University of Kentucky; and Derek J. Milner, Holly L. D. Nye and Jo Ann Cameron, Ph.D. of the University of Illinois. All except the final four are also affiliated with the IU Center for Regenerative Biology and Medicine.

The School of Science, IU Center for Regenerative Biology and Medicine, IU School of Dentistry, IU School of Informatics, and IU School of Medicine are all located on the IUPUI campus.

Indiana University School of Medicine

Related Proteins Articles from Brightsurf:

New understanding of how proteins operate
A ground-breaking discovery by Centenary Institute scientists has provided new understanding as to the nature of proteins and how they exist and operate in the human body.

Finding a handle to bag the right proteins
A method that lights up tags attached to selected proteins can help to purify the proteins from a mixed protein pool.

Designing vaccines from artificial proteins
EPFL scientists have developed a new computational approach to create artificial proteins, which showed promising results in vivo as functional vaccines.

New method to monitor Alzheimer's proteins
IBS-CINAP research team has reported a new method to identify the aggregation state of amyloid beta (Aβ) proteins in solution.

Composing new proteins with artificial intelligence
Scientists have long studied how to improve proteins or design new ones.

Hero proteins are here to save other proteins
Researchers at the University of Tokyo have discovered a new group of proteins, remarkable for their unusual shape and abilities to protect against protein clumps associated with neurodegenerative diseases in lab experiments.

Designer proteins
David Baker, Professor of Biochemistry at the University of Washington to speak at the AAAS 2020 session, 'Synthetic Biology: Digital Design of Living Systems.' Prof.

Gone fishin' -- for proteins
Casting lines into human cells to snag proteins, a team of Montreal researchers has solved a 20-year-old mystery of cell biology.

Coupled proteins
Researchers from Heidelberg University and Sendai University in Japan used new biotechnological methods to study how human cells react to and further process external signals.

Understanding the power of honey through its proteins
Honey is a culinary staple that can be found in kitchens around the world.

Read More: Proteins News and Proteins Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.