Study strengthens link between sirtuins and life extension

December 14, 2009

CAMBRIDGE, Mass. -- A new paper from MIT biology professor Leonard Guarente strengthens the link between longevity proteins called sirtuins and the lifespan-extending effects of calorie restriction.

For decades, it has been known that cutting normal calorie consumption by 30 to 40 percent can boost lifespan and improve overall health in animals such as worms and mice. Guarente believes that those effects are controlled by sirtuins -- proteins that keep cells alive and healthy in the face of stress by coordinating a variety of hormonal networks, regulatory proteins and other genes.

In his latest work, published Dec. 15 in the journal Genes and Development, Guarente adds to his case by reporting that sirtuins bring about the effects of calorie restriction on a brain system, known as the somatotropic signaling axis, that controls growth and influences lifespan length.

"This puts SIRT1 at a nexus connecting the effects of diet and the somatropic signaling axis," says Guarente. "This is a major shot across the bow that says sirtuins really are involved in fundamental aspects of calorie restriction."

Guarente and others believe that drugs that boost sirtuin production could help fight diseases of aging such as diabetes and Alzheimer's, improving health in later life and potentially extending lifespan. Drugs that promote sirtuin production are now in clinical trials in diabetes patients, with results expected next year.

How they did it: The researchers genetically engineered mice whose ability to produce the major mammalian sirtuin SIRT1 in the brain was greatly reduced. Those mice and normal mice were placed on a calorie-restricted diet. The normal mice showed much lower levels of circulating growth hormones, demonstrating that their somatotropic signaling system was impaired, but calorie restriction had no effect on hormone levels of mice that could not produce SIRT1.

Next steps: In future work, Guarente plans to investigate the mechanism by which sirtuins regulate the somatotropic axis. The work could also help researchers and companies in their search for small molecules that modulate sirtuins for maximum benefit.
-end-
Source: "Neuronal SIRT1 regulates endocrine and behavioral responses to calorie restriction," Dena Cohen, Leonard Guarente et al. Genes and Development, Dec. 15, 2009.

Funding: CHDI Inc., the Hereditary Disease Foundation, the American Parkinson's Disease Association, the National Institutes of Health, and the Paul F. Glenn Foundation.

Written by Anne Trafton, MIT News Office

Massachusetts Institute of Technology

Related Brain Articles from Brightsurf:

Glioblastoma nanomedicine crosses into brain in mice, eradicates recurring brain cancer
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier in mice could deliver cancer-killing drugs directly to malignant brain tumors, new research from the University of Michigan shows.

Children with asymptomatic brain bleeds as newborns show normal brain development at age 2
A study by UNC researchers finds that neurodevelopmental scores and gray matter volumes at age two years did not differ between children who had MRI-confirmed asymptomatic subdural hemorrhages when they were neonates, compared to children with no history of subdural hemorrhage.

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.

Read More: Brain News and Brain Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.