Penn researchers find reproductive germ cells survive and thrive in transplants, even among species

December 14, 2009

PHILADELPHIA -- Reproductive researchers from the University of Pennsylvania and The Children's Hospital of Philadelphia have succeeded in isolating and transplanting pure populations of the immature cells that enable male reproduction in two species--human spermatogonia and mouse gonocytes. These germline stem cells, taken from testis biopsies, demonstrated viability following transplantation to mouse testes within a controlled laboratory setting.

The results indicate remarkable similarity between the gene expression and behavior of the ancient cells that govern reproduction, even between two species that diverged phylogenetically 75 million years ago. The study reveals much about the lifecycle of the male germline stem cell. The results demonstrate relevance to the basic understanding of all stem cell types--which are frequently difficult to isolate in such highly enriched populations--but also provide hope to prepubescent men risking infertility due to cancer treatment. A clinical trial using this methodology is underway at CHOP.

"There is remarkable similarity between prepubertal human spermatogonia and mouse gonocytes, which is not only very surprising but quite informative considering the large separation between human and mouse," said Ralph L. Brinster, a reproductive physiologist at the University of Pennsylvania School of Veterinary Medicine. "In our studies we found seven of the 100 most highly enriched genes between germ cells and somatic cells were conserved in human and mice, attesting to the fundamental importance of germ cells in species evolution."

Even when human prepubescent germ cells were transplanted into mouse testes, the cells preserved themselves by migrating to the "basement" membrane of the seminiferous tubule where they were maintained for months. The expression of several novel genes known to be essential for stem cell self-renewal was high.

The ability of prepubertal human spermatogonia to migrate to the basement membrane of mouse testes and be maintained as germ cells, and likely spermatogonial stem cells (SSCs), lends biological support to the similarity of the two species' germ cells. The relationship opens a window of opportunity to learn about human SSCs through studies on prepubertal human spermatogonia that can be identified and isolated in essentially pure populations and relating observations to the rapidly developing information base about mouse SSCs.

The research team, led by Brinster and Jill P. Ginsberg, pediatric oncologist with The Children's Hospital of Philadelphia, published the study, "Prepubertal Human Spermatogonia and Mouse Gonocytes Share Conserved Gene Expression of Germline Stem Cell Regulatory Molecules," Dec. 14, 2009 in the journal Proceedings of the National Academy of Sciences.

The results have particular relevance to medical treatment of human infertility because of the critical role of these stem cells in male fertility. With cure rates of childhood cancer now approaching 80, about one in 640 individuals of reproductive age are now cancer survivors. However, many of these survivors will have fertility problems as adults. Cryopreservation of a testis biopsy in a tissue bank from boys undergoing cancer therapy is an option to preserve stem cells for later transplantation to restore spermatogenesis and is currently being examined in clinical trials. The results in the paper provide valuable information relevant to handling stem cells during cryopreservation and transplantation and also establish a foundation for culture studies on the stem cells.

The Children's Hospital of Philadelphia is currently offering testicular tissue cryopreservation as an experimental treatment option. The study began in January 2008 and includes 16 boys diagnosed with various solid tumors, ranging in age from 3 months to 14 years old. All were treated with chemotherapy or radiation, which carries a significant risk of resulting infertility. These boys had a tiny portion of their testis removed and frozen for their potential future use. The hope is one day to use frozen tissue from prepubescent males to restore fertility. Physicians would thaw the preserved tissue and reimplant it in the patient's testes, or use it for other assisted reproduction technologies.

"Even though there are currently no guarantees of clinical success, families are highly receptive to this option," said Ginsberg, who led the clinical arm of the research study. Results of that study, demonstrating whether parents would be receptive to the treatment option, were published online Oct. 27 in the journal Human Reproduction.
-end-
The National Institute of Child Health and Human Development supported this study, as did the Ethel Foerderer Award at The Children's Hospital of Philadelphia, and the Robert J. Kleberg, Jr. and Helen C. Kleberg Foundation.

The study was conducted by Brinster, Xin Wu, Jonathan A. Schmidt and Mary R. Avarbock of the Department of Animal Biology at Penn's School of Veterinary Medicine; John W. Tobias of the Penn's Bioinformatics Core; co-investigator Jill P. Ginsberg and Claire A. Carlson of the Division of Oncology at The Children's Hospital of Philadelphia; and Thomas F. Kolon of the Department of Urology at The Children's Hospital of Philadelphia.

University of Pennsylvania

Related Stem Cells Articles from Brightsurf:

SUTD researchers create heart cells from stem cells using 3D printing
SUTD researchers 3D printed a micro-scaled physical device to demonstrate a new level of control in the directed differentiation of stem cells, enhancing the production of cardiomyocytes.

More selective elimination of leukemia stem cells and blood stem cells
Hematopoietic stem cells from a healthy donor can help patients suffering from acute leukemia.

Computer simulations visualize how DNA is recognized to convert cells into stem cells
Researchers of the Hubrecht Institute (KNAW - The Netherlands) and the Max Planck Institute in Münster (Germany) have revealed how an essential protein helps to activate genomic DNA during the conversion of regular adult human cells into stem cells.

First events in stem cells becoming specialized cells needed for organ development
Cell biologists at the University of Toronto shed light on the very first step stem cells go through to turn into the specialized cells that make up organs.

Surprising research result: All immature cells can develop into stem cells
New sensational study conducted at the University of Copenhagen disproves traditional knowledge of stem cell development.

The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.

Healthy blood stem cells have as many DNA mutations as leukemic cells
Researchers from the Princess Máxima Center for Pediatric Oncology have shown that the number of mutations in healthy and leukemic blood stem cells does not differ.

New method grows brain cells from stem cells quickly and efficiently
Researchers at Lund University in Sweden have developed a faster method to generate functional brain cells, called astrocytes, from embryonic stem cells.

NUS researchers confine mature cells to turn them into stem cells
Recent research led by Professor G.V. Shivashankar of the Mechanobiology Institute at the National University of Singapore and the FIRC Institute of Molecular Oncology in Italy, has revealed that mature cells can be reprogrammed into re-deployable stem cells without direct genetic modification -- by confining them to a defined geometric space for an extended period of time.

Researchers develop a new method for turning skin cells into pluripotent stem cells
Researchers at the University of Helsinki, Finland, and Karolinska Institutet, Sweden, have for the first time succeeded in converting human skin cells into pluripotent stem cells by activating the cell's own genes.

Read More: Stem Cells News and Stem Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.