Enhanced brain-machine interface taps into additional senses

December 14, 2010

Washington, DC -- Monkeys moved thought-controlled computer cursors more quickly and accurately when provided with additional sensory feedback, according to a new study in the Dec. 15 issue of The Journal of Neuroscience. While most brain-machine technologies rely only on visual feedback, this study demonstrated that these systems can be improved when users have additional input, such as a sense of the arm's position and motion, a sensation known as proprioception.

With the aid of brain-controlled devices, paralyzed people have been able to send e-mail, play video games, and operate robotic arms. In this study, researchers led by Nicholas Hatsopoulos, PhD, of the University of Chicago, aimed to help further develop such machines for people who may still experience feeling in paralyzed limbs, including many patients with spinal cord injury and amyotrophic lateral sclerosis (ALS).

"Organisms use multiple senses, including sight and touch, as feedback to adjust motor behavior," Hatsopoulos said. "The ability to feel movements of the limbs and body is critical for normal motor control. Loss of this sense results in movements that are slow, poorly coordinated, and require great concentration."

The authors worked with two adult rhesus macaques to assess a system that incorporates a sense of movement. Each monkey was first trained to control a cursor using brain signals only; electrodes collected and processed data from the monkeys' motor cortex cells and transmitted those commands to the computer. Basic science research has shown that simply thinking about a motion activates brain cells in the same way that making the movement does, so each monkey needed to only think about moving a cursor to do it.

The researchers equipped each animal with a robotic "sleeve" that fit over an arm. In the first part of the experiment, the monkeys controlled the cursor by simply looking at the computer screen. In the second part, the robotic device moved the monkey's relaxed arm in tandem with the cursor movement, so the monkey could sense the cursor's motion in time and space. The authors found when the monkeys had the extra sensation, the cursor hit the target faster and more directly. The results also showed increased movement-related information in the activity of motor cortex cells, compared with visual-only feedback.

Hatsopoulos said his group's findings may pave the way for enhanced brain-controlled devices that include multiple forms of natural or even artificially produced sensory feedback. "Wearable exoskeletal robots could provide sensory information to patients with full or partial feeling," he said. "Alternatively, direct stimulation of the relevant area of the cortex could be used to replicate sensory feedback in patients who have lost both motor and sensory function."
The research was supported by the National Institute of Neurological Disorders and Stroke and the Paralyzed Veterans of America Research Foundation.

The Journal of Neuroscience is published by the Society for Neuroscience, an organization of more than 40,000 basic scientists and clinicians who study the brain and nervous system. Hatsopoulos can be reached at nicho@uchicago.edu.

Society for Neuroscience

Related Computer Articles from Brightsurf:

UCLA computer scientists set benchmarks to optimize quantum computer performance
Two UCLA computer scientists have shown that existing compilers, which tell quantum computers how to use their circuits to execute quantum programs, inhibit the computers' ability to achieve optimal performance.

Digitize your dog into a computer game
Researchers from CAMERA at the University of Bath have developed motion capture technology that enables you to digitise your dog without a motion capture suit and using only one camera.

Stabilizing brain-computer interfaces
Researchers from Carnegie Mellon University (CMU) and the University of Pittsburgh (Pitt) have published research in Nature Biomedical Engineering that will drastically improve brain-computer interfaces and their ability to remain stabilized during use, greatly reducing or potentially eliminating the need to recalibrate these devices during or between experiments.

Computer-generated genomes
Professor Beat Christen, ETH Zurich to speak in the AAAS 2020 session, 'Synthetic Biology: Digital Design of Living Systems.' Christen will describe how computational algorithms paired with chemical DNA synthesis enable digital manufacturing of biological systems up to the size of entire microbial genomes.

Computer-based weather forecast: New algorithm outperforms mainframe computer systems
The exponential growth in computer processing power seen over the past 60 years may soon come to a halt.

A computer that understands how you feel
Neuroscientists have developed a brain-inspired computer system that can look at an image and determine what emotion it evokes in people.

Computer program looks five minutes into the future
Scientists from the University of Bonn have developed software that can look minutes into the future: The program learns the typical sequence of actions, such as cooking, from video sequences.

Computer redesigns enzyme
University of Groningen biotechnologists used a computational method to redesign aspartase and convert it to a catalyst for asymmetric hydroamination reactions.

Mining for gold with a computer
Engineers from Texas A&M University and Virginia Tech report important new insights into nanoporous gold -- a material with growing applications in several areas, including energy storage and biomedical devices -- all without stepping into a lab.

Teaching quantum physics to a computer
An international collaboration led by ETH physicists has used machine learning to teach a computer how to predict the outcomes of quantum experiments.

Read More: Computer News and Computer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.