Fighter pilots' brains are 'more sensitive'

December 14, 2010

Cognitive tests and MRI scans have shown significant differences in the brains of fighter pilots when compared to a control group, according to a new study led by scientists from UCL.

The study, published today in the Journal of Neuroscience, compares the cognitive performance of 11 front-line RAF (Royal Air Force) Tornado fighter pilots to a control group of a similar IQ with no previous experience of piloting aircraft. All the participants completed two 'cognitive control' tasks which were used to investigate rapid decision making. Diffusion tensor imaging (DTI), a type of MRI brain scan, was then used to examine the structure of white matter connections between brain regions associated with cognitive control.

The researchers found that fighter pilots have superior cognitive control, showing significantly greater accuracy on one of the cognitive tasks, despite being more sensitive to irrelevant, distracting information. The MRI scans revealed differences between pilots and controls in the microstructure of white matter in the right hemisphere of the brain.

Senior author Professor Masud Husain, UCL Institute of Neurology and UCL Institute of Cognitive Neuroscience, said: "We were interested in the pilots because they're often operating at the limits of human cognitive capability - they are an expert group making precision choices at high speed.

"Our findings show that optimal cognitive control may surprisingly be mediated by enhanced responses to both relevant and irrelevant stimuli, and that such control is accompanied by structural alterations in the brain. This has implications beyond simple distinctions between fighter pilots and the rest of us because it suggests expertise in certain aspects of cognition are associated with changes in the connections between brain areas. So, it's not just that the relevant areas of the brain are larger - but that the connections between key areas are different. Whether people are born with these differences or develop them is currently not known."

The study tasks were designed to assess the influence of distracting information and the ability to update a response plan in the presence of conflicting visual information. In the first task, participants had to press a right or left arrow key in response to the direction of an arrow on a screen in front of them, which was flanked by other distracting arrows pointing in different directions. In the second task, they had to respond as quickly as possible to a 'go' signal, unless they were instructed to change their plan before they had even made a response.

The results of the first task showed that the expert pilots were more accurate than age-matched volunteers, with no significant difference in reaction time - so, the pilots were able to perform the task at the same speed but with significantly higher accuracy. In the second task, there was no significant difference between the pilots and volunteers, which the authors say suggests that expertise in cognitive control may be highly specialised, highly particular to specific tasks and not simply associated with overall enhanced performance.

These findings suggest that in humans some types of expert cognitive control may be mediated by enhanced response gain to both relevant and irrelevant stimuli, and is accompanied by structural alterations in the white matter of the brain.
-end-
The research was supported by funding from the Wellcome Trust, the Medical Research Council and the NIHR Specialist Biomedical Centre at UCL/UCLH.

Notes to Editors

  1. For more information or to interview the researchers quoted, please contact Ruth Howells in the UCL Media Relations Office on tel: +44 (0)20 7679 9739, mobile: +07790 675 947, email: ruth.howells@ucl.ac.uk
  2. The paper, 'Expert cognitive control and individual differences associated with frontal and parietal white matter microstructure' by Roberts RE, Anderson E & Husain M is published in the Journal of Neuroscience on Wednesday 15th December 2010 embargoed to Tuesday 14th December 2010, 22.00 UK time (17.00 Eastern time)
  3. Journalists requiring advance copies of the paper should contact UCL Media Relations.
  4. Images are available from: www.defenceimages.mod.uk Please check copyright and credit correctly.
  5. Dr R. Edward Roberts is now at the University of Cambridge, but was at UCL when this study was conducted.


About UCL (University College London)

Founded in 1826, UCL was the first English university established after Oxford and Cambridge, the first to admit students regardless of race, class, religion or gender, and the first to provide systematic teaching of law, architecture and medicine. UCL is among the world's top universities, as reflected by performance in a range of international rankings and tables. Alumni include Marie Stopes, Jonathan Dimbleby, Lord Woolf, Alexander Graham Bell, and members of the band Coldplay. UCL currently has over 13,000 undergraduate and 9,000 postgraduate students. Its annual income is over £700 million. www.ucl.ac.uk

About the Wellcome Trust

The Wellcome Trust is a global charitable foundation dedicated to achieving extraordinary improvements in human and animal health. It supports the brightest minds in biomedical research and the medical humanities. The Trust's breadth of support includes public engagement, education and the application of research to improve health. It is independent of both political and commercial interests. www.wellcome.ac.uk

About the MRC

For almost 100 years the Medical Research Council has improved the health of people in the UK and around the world by supporting the highest quality science. The MRC invests in world-class scientists. It has produced 29 Nobel Prize winners and sustains a flourishing environment for internationally recognised research. The MRC focuses on making an impact and provides the financial muscle and scientific expertise behind medical breakthroughs, including one of the first antibiotics penicillin, the structure of DNA and the lethal link between smoking and cancer. Today MRC funded scientists tackle research into the major health challenges of the 21st century. www.mrc.ac.uk

University College London

Related Brain Articles from Brightsurf:

Glioblastoma nanomedicine crosses into brain in mice, eradicates recurring brain cancer
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier in mice could deliver cancer-killing drugs directly to malignant brain tumors, new research from the University of Michigan shows.

Children with asymptomatic brain bleeds as newborns show normal brain development at age 2
A study by UNC researchers finds that neurodevelopmental scores and gray matter volumes at age two years did not differ between children who had MRI-confirmed asymptomatic subdural hemorrhages when they were neonates, compared to children with no history of subdural hemorrhage.

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.

Read More: Brain News and Brain Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.