Gene information predicts survival time, possible new treatment options for lung-cancer patients

December 14, 2010

DALLAS - Dec. 14, 2010 - Researchers at UT Southwestern Medical Center have discovered sets of genes active in cancer cells and normal tissue that predict survival time and potential new treatments for patients with non-small cell lung cancer.

"Patient responses to cancer treatment vary widely and often depend on subtle biological differences among tumors," said Dr. David Mangelsdorf, chairman of pharmacology at UT Southwestern and co-lead author of the study, published Dec. 14 by PLoS Medicine.

"These findings are important because the ability to determine which genes are being expressed in each person's tumor, as well as a patient's likely survival time, can guide physicians to the most effective and appropriate personalized treatments," he said.

Researchers involved in the study at UT Southwestern and UT M.D. Anderson Cancer Center carefully microdissected lung tumors and adjacent healthy lung tissue from 30 patients. To determine which genes were active, they examined each sample for the presence of messenger ribonucleic acid (mRNA) associated with the 48 known genes for molecules called nuclear hormone receptors.

The research team then compared the set of active genes, also called a gene expression profile or gene signature, with the actual clinical outcome of each study patient. They found that the expression of genes for specific nuclear hormone receptors was an excellent predictor of which patients were likely to survive the longest. They validated their test by screening more than 500 additional lung-tumor samples and accurately predicting those patients' outcomes.

In particular, the presence of two nuclear receptors - the short heterodimer partner (SHP) and the progesterone receptor (PR) - in tumor tissue was predictive of a good prognosis. Patients with those so-called biomarkers in their cancer cells lived the longest.

In normal lung tissue, a good prognosis was associated with the presence of nuclear receptors called nerve growth factor induced gene B3 (NGFIB3) and mineralocorticoid receptor (MR).

Dr. Mangelsdorf, a National Academy of Sciences member who is a leading expert on nuclear receptors, said the investigators focused on screening for the activity of these 48 nuclear receptor genes because several of them are known to be involved in promoting or inhibiting cancer. In addition, drugs that target certain nuclear receptors already are being used as front-line therapy in humans against breast cancer, prostate cancer and acute leukemia.

"The goal of identifying these genetic signatures in lung cancer is not just to determine how long a cancer patient will live, but also to home in on the most relevant drug or therapy targets that act specifically on these particular gene products," said Dr. Mangelsdorf, who also is an investigator with the Howard Hughes Medical Institute.

The results are a significant step toward personalized medicine, said Dr. John Minna, director of the Nancy B. and Jake L. Hamon Center for Therapeutic Oncology Research and the W.A. "Tex" and Deborah Moncrief Jr. Center for Cancer Genetics who has been investigating the biology of lung cancer for more than 30 years.

"Our long-term goal is to be able to sample a patient's lung cancer and perform molecular tests that can predict both how a patient will do and, more importantly, the best treatment for that individual," said Dr. Minna, co-lead author of the study.

"We were amazed to find that the pattern of expression of nuclear receptors in both lung cancers and normal lung tissue were so predictive of a patient's outcome. Because available drugs already target so many of these receptors, our next step is to find out which drugs will kill lung cancer cells expressing these specific receptors."
-end-
Other UT Southwestern researchers involved in the study were lead authors Dr. Yangsik Jeong, a former graduate student and postdoctoral researcher now at the Yonsei University in Korea, and Dr. Yang Xie, assistant professor of clinical sciences; Dr. Guanghua Xiao, assistant professor of clinical sciences; and Dr. Luc Girard, assistant professor of pharmacology. Dr. Ignacio Wistuba at M.D. Anderson also contributed.

The research was funded by the HHMI, the National Institutes of Health, the Cancer Prevention and Research Institute of Texas, the Department of Defense, the Welch Foundation and the Gillson Longenbaugh Foundation.

This news release is available on our World Wide Web home page at http://www.utsouthwestern.edu/home/news/index.html

To automatically receive news releases from UT Southwestern via e-mail, subscribe at www.utsouthwestern.edu/receivenews

UT Southwestern Medical Center

Related Prostate Cancer Articles from Brightsurf:

Low risk of cancer spread on active surveillance for early prostate cancer
Men undergoing active surveillance for prostate cancer have very low rates - one percent or less - of cancer spread (metastases) or death from prostate cancer, according to a recent study published in the Journal of Urology®, an Official Journal of the American Urological Association (AUA).

ESMO 2020: Breast cancer drug set to transform prostate cancer treatment
A drug used to treat breast and ovarian cancer can extend the lives of some men with prostate cancer and should become a new standard treatment for the disease, concludes a major trial which is set to change clinical practice.

Major trial shows breast cancer drug can hit prostate cancer Achilles heel
A drug already licensed for the treatment of breast and ovarian cancers is more effective than targeted hormone therapy at keeping cancer in check in some men with advanced prostate cancer, a major clinical trial reports.

The Lancet: Prostate cancer study finds molecular imaging could transform management of patients with aggressive cancer
Results from a randomised controlled trial involving 300 prostate cancer patients find that a molecular imaging technique is more accurate than conventional medical imaging and recommends the scans be introduced into routine clinical practice.

Common genetic defect in prostate cancer inspires path to new anti-cancer drugs
Researchers found that, in prostate cancer, a mutation leading to the loss of one allele of a tumor suppressor gene known as PPP2R2A is enough to worsen a tumor caused by other mutations.

First prostate cancer therapy to target genes delays cancer progression
For the first time, prostate cancer has been treated based on the genetic makeup of the cancer, resulting in delayed disease progression, delayed time to pain progression, and potentially extending lives in patients with advanced, metastatic prostate cancer, reports a large phase 3 trial.

Men taking medications for enlarged prostate face delays in prostate cancer diagnosis
University of California San Diego School of Medicine researchers report that men treated with medications for benign prostatic hyperplasia (enlarged prostate) experienced a two-year delay in diagnosis of their prostate cancer and were twice as likely to have advanced disease upon diagnosis.

CNIO researchers confirm links between aggressive prostate cancer and hereditary breast cancer
The study has potential implications for families with members suffering from these types of tumours who are at an increased risk of developing cancer.

Distinguishing fatal prostate cancer from 'manageable' cancer now possible
Scientists at the University of York have found a way of distinguishing between fatal prostate cancer and manageable cancer, which could reduce unnecessary surgeries and radiotherapy.

Researchers find prostate cancer drug byproduct can fuel cancer cells
A genetic anomaly in certain men with prostate cancer may impact their response to common drugs used to treat the disease, according to new research at Cleveland Clinic.

Read More: Prostate Cancer News and Prostate Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.