Fertile soil doesn't fall from the sky

December 14, 2012

Leipzig. Remains of dead bacteria have far greater meaning for soils than previously assumed. Around 40 per cent of the microbial biomass is converted to organic soil components, write researchers from the Helmholtz Centre for Environmental Research (UFZ), the Technische Universität Dresden (Technical University of Dresden) , the University of Stockholm, the Max-Planck-Institut für Entwicklungsbiologie (Max Planck Institute for Developmental Biology) and the Leibniz-Universität Hannover (Leibniz University Hannover) in the professional journal Biogeochemistry. Until now it was assumed that the organic components of the soil were comprised mostly of decomposed plant material which is directly converted to humic substances. In a laboratory experiment and in field testing the researchers have now refuted this thesis. Evidently the easily biologically degradable plant material is initially converted to microbial biomass which then provides the source material to soil organic matter.

Soil organic matter represent the largest fraction of terrestrially bound carbon in the biosphere. The compounds therefore play an important role not only for soil fertility and agricultural yields. They are also one of the key factors controlling the concentration of carbon dioxide in the atmosphere. Climatic change can therefore be slowed down or accelerated, according to the management of the soil resource.

In laboratory incubation experiment, the researchers initially labelled model bacteria with the stable isotope 13C and introduced the bacteria to soil deriving from the long-term cultivation experiment "Ewiger Roggenbau" in Halle/Saale. Following the incubation time of 224 days the fate of the carbon of bacterial origin was determined. "As a result we found fragments of bacterial cell walls in sizes of up to 500 x 500 nanometres throughout our soil samples. Such fragments have also been observed in other studies, but have never been identified or quantified", declares Professor Matthias Kästner of the UFZ. The accumulation of the bacterial cell wall fragments appears to be supported by peptides and proteins from the liquid interior of the cells, which remain to a greater extent in the soil than other cell components. These materials enable the formation of a film of organic molecules on the mineral components of the soil, on which the carbon from the dead bacteria is accumulated and stabilised.

When the fragments of the bacterial cell walls dry out, they may lose their rubber-like properties and can harden like glass. If the soil subsequently becomes moist again, however, under certain circumstances they cannot be re-wetted - an important prerequisite for their degradation by other bacteria. This would provide the simplest explanation for the stabilisation of theoretically easily degradable carbon compounds in soil. "This new approach explains many properties of organic soil components which were previously viewed as contradictory", says Matthias Kästner. In the late 1990s, Kästner and his team arrived at this idea on the basis of earlier investigations on the degradation of environmental contaminants like anthracene in polluted soils of former gas work sites. In these investigations, isotopic analyses revealed bound carbon residues which have been of bacterial origin. With the support of the German Research Foundation (Deutsche Forschungsgemeinschaft; DFG), from 2000 on they began to follow up this clue within the scope of two joint research programmes.

Following the laboratory experiment, the hypothesis was tested in field research. In summer of 2009 the researchers took soil samples in the forefield of the Damma Glacier in the Swiss Canton Uri. In the course of the last 150 years glacier has retreated by around one kilometre. In its place granite rock remained behind, which was gradually recolonised by living organisms accompanied by soil development. Following the formation of new soil the first plants, such as mosses and grasses, were followed by bushes and, later, also by trees. In the meantime, the Damma Glacier, on which a broad range of studies is being conducted, has therefore become an important outdoor laboratory not only for climate researchers, but for ecologists as well. The soil investigated with the samples was between 0 and 120 years old and thus allowed insight into early processes of soil development. Scanning electron microscopic investigations which followed at the Max Planck Institute for Developmental Biology in Tübingen also indicated that the covering of the soil mineral particles by a film comprised of bacterial cell wall residues had increased with the soil age. The results of the outdoor investigations therefore confirmed the hypothesis and the laboratory results. This new knowledge was ultimately made possible by recent advances in scanning electron microscopy, which in the meantime enable the identification and evaluation of the soil nano-components.

The predominant share of the plant debris in fertile soil is thus rapidly processed by micro-organisms, e.g. bacteria, leading to more bacteria and, in turn, also to more cell fragments. This then results in more organic material in the soil. "Even though the greatest part of the organic carbon in the eco-systems is definitively produced primarily by plants, we were able to show that a large part of the organic material is actually comprised of residues of bacteria and fungi. This underscores the importance of bacteria as organisms in all types of soil", summarises Matthias Kästner. Furthermore, they are important for the global climate: The degradation of these organic material results, in mineralisation products and the greenhouse gas carbon dioxide (CO2). According to estimates from Great Britain the amount of CO2 escaping annually to the atmosphere due to the degradation of organic material in the soils of England and Wales is in the order of magnitude by which greenhouse gas emissions are annually reduced there. This means that no rigorous progress in climate protection may be accomplished without first protecting the soil.
-end-
Publications:

Christian Schurig, Rienk H. Smittenberg, Juergen Berger, Fabio Kraft, Susanne K. Woche, Marc-O. Goebel, Hermann J. Heipieper, Anja Miltner, Matthias Kaestner (2012): Microbial cell-envelope fragments and the formation of soil organic matter: a case study from a glacier forefield. Biogeochemistry.

Published online: DOI: 10.1007/s10533-012-9791-3

The investigations were supported by the German Research Foundation (DFG) within the scope of the SPP1315 DynaCarb project and the European Union within the scope of the ModelPROBE project.

Anja Miltner, Petra Bombach, Burkhardt Schmidt-Brücken, Matthias Kästner (2012). SOM genesis - Microbial biomass a significant source. Biogeochemistry, in press.

Published online: DOI 10.1007/s10533-011-9658-z

The investigations were supported by the German Research Foundation (DFG) within the scope of the SPP1090 BioRefrak project and the European Union within the scope of the ModelPROBE project.

Further information:

Professor Matthias Kästner/ Dr. Anja Miltner/ Dr. Christian Schurig
Helmholtz Centre for Environmental Research (UFZ)
Telephone: 03-41-235-1235


http://www.ufz.de/index.php?de=4459

http://www.ufz.de/index.php?de=4530

http://www.ufz.de/index.php?de=18888

or from

Tilo Arnhold (UFZ press office)
http://www.ufz.de/index.php?de=640

Related links:

EU project ModelPROBE:http://www.ufz.de/modelprobe/index.php?en=18269

DFG project DynaCarb:http://www.spp1315.uni-jena.de/

UFZ core topic water / soil:http://www.ufz.de/index.php?en=20167

Helmholtz Association

Related Bacteria Articles from Brightsurf:

Siblings can also differ from one another in bacteria
A research team from the University of T├╝bingen and the German Center for Infection Research (DZIF) is investigating how pathogens influence the immune response of their host with genetic variation.

How bacteria fertilize soya
Soya and clover have their very own fertiliser factories in their roots, where bacteria manufacture ammonium, which is crucial for plant growth.

Bacteria might help other bacteria to tolerate antibiotics better
A new paper by the Dynamical Systems Biology lab at UPF shows that the response by bacteria to antibiotics may depend on other species of bacteria they live with, in such a way that some bacteria may make others more tolerant to antibiotics.

Two-faced bacteria
The gut microbiome, which is a collection of numerous beneficial bacteria species, is key to our overall well-being and good health.

Microcensus in bacteria
Bacillus subtilis can determine proportions of different groups within a mixed population.

Right beneath the skin we all have the same bacteria
In the dermis skin layer, the same bacteria are found across age and gender.

Bacteria must be 'stressed out' to divide
Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.

How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.

The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?

Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.

Read More: Bacteria News and Bacteria Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.