Changes in the gut bacteria protect against stroke

December 14, 2012

Researchers at the University of Gothenburg, Sweden, and the Chalmers University of Technology, Sweden, demonstrate that an altered gut microbiota in humans is associated with symptomatic atherosclerosis and stroke. These findings are presented in a study published in Nature Communications on December 4.

The human body contains ten times more bacterial cells than human cells, most of which are found in the gut. These bacteria contain an enormous number of genes in addition to our host genome, and are collectively known as the gut metagenome.

How does the metagenome affect our health? This question is currently being addressed by researchers in the rapidly expanding field of metagenomic research. Several diseases have been linked to variations in the metagenome.

Researchers at Chalmers University of Technology and Sahlgrenska Academy, University of Gothenburg, now also show that changes in the gut metagenome can be linked to atherosclerosis and stroke.

The researchers compared a group of stroke patients with a group of healthy subjects and found major differences in their gut microbiota. In particular, they showed that genes required for the production of carotenoids were more frequently found in gut microbiota from healthy subjects. The healthy subjects also had significantly higher levels of a certain carotenoid in the blood than the stroke survivors.

Carotenoids are a type of antioxidant, and it has been claimed for many years that they protect against angina and stroke. Thus, the increased incidence of carotenoid-producing bacteria in the gut of healthy subjects may offer clues to explain how the gut metagenome affects disease states.

Carotenoids are marketed today as a dietary supplement. The market for them is huge, but clinical studies of their efficacy in protecting against angina and stroke have produced varying results.

Jens Nielsen, Professor of Systems Biology at Chalmers, says that it may be preferable to take probiotics instead - for example dietary supplements containing types of bacteria that produce carotenoids.

"Our results indicate that long-term exposure to carotenoids, through production by the bacteria in the digestive system, has important health benefits. These results should make it possible to develop new probiotics. We think that the bacterial species in the probiotics would establish themselves as a permanent culture in the gut and have a long-term effect".

"By examining the patient's bacterial microbiota, we should also be able to develop risk prognoses for cardiovascular disease", says Fredrik Bäckhed, Professor of Molecular Medicine at the University of Gothenburg. "It should be possible to provide completely new disease-prevention options".

The researchers have now started a company, Metabogen, to further develop their discoveries relating to the metagenome. Their success is based on close cooperation between engineers, microbiologists and doctors.

Jens Nielsen and Fredrik Bäckhed both agree that one of the challenges in the rapidly developing area of metagenomics is its multidisciplinary facets, requiring novel collaborations and merging of research fields.
-end-
The paper "Symptomatic atherosclerosis is associated with an altered gut metagenome" was published on December 4.

Contact:

Fredrik Bäckhed
Professor of Molecular Medicine at the Sahlgrenska Academy
University of Gothenburg


Jens Nielsen
Professor of Systems Biology at Chalmers University of Technology
46-70-243-66-18, nielsenj@chalmers.se

Fredrik Karlsson
Research Student
Systems Biology at Chalmers University of Technology
46-31-772-38-86, fredrik.karlsson@chalmers.seThe research was funded by:

Knut and Alice Wallenberg Foundation, the Chalmers Foundation, Swedish Heart Lung Foundation, Torsten Söderberg's Foundation, IngaBritt och Arne Lundbergs Foundation, AFA Insurances, the Swedish Research Council, and the Swedish Foundation for Strategic Research.

University of Gothenburg

Related Bacteria Articles from Brightsurf:

Siblings can also differ from one another in bacteria
A research team from the University of Tübingen and the German Center for Infection Research (DZIF) is investigating how pathogens influence the immune response of their host with genetic variation.

How bacteria fertilize soya
Soya and clover have their very own fertiliser factories in their roots, where bacteria manufacture ammonium, which is crucial for plant growth.

Bacteria might help other bacteria to tolerate antibiotics better
A new paper by the Dynamical Systems Biology lab at UPF shows that the response by bacteria to antibiotics may depend on other species of bacteria they live with, in such a way that some bacteria may make others more tolerant to antibiotics.

Two-faced bacteria
The gut microbiome, which is a collection of numerous beneficial bacteria species, is key to our overall well-being and good health.

Microcensus in bacteria
Bacillus subtilis can determine proportions of different groups within a mixed population.

Right beneath the skin we all have the same bacteria
In the dermis skin layer, the same bacteria are found across age and gender.

Bacteria must be 'stressed out' to divide
Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.

How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.

The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?

Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.

Read More: Bacteria News and Bacteria Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.