Designer crystals for next-gen electronics

December 14, 2015

Liquid is often seen as the kryptonite of electronics, known for damaging and corroding components.

That's why a new process that uses vapour- rather than liquid - to grow designer crystals could lead to a new breed of faster, more powerful electronic devices.

The method, invented by an international team of scientists from the University of Leuven in Belgium, the National University of Singapore and CSIRO has been published today in the journal Nature Materials.

For the first time, the researchers have shown how the designer crystals known as 'metal organic frameworks' or MOFs, can be grown using a vapour method that is similar to steam hovering over a pot of hot water.

The crystals are the world's most porous materials, and if applied to microelectronic devices, could significantly boost their processing power.

However according to CSIRO researcher Mark Styles (right), up until now these crystals could only be grown and applied using a liquid solvent, making them unsuitable for electronics applications.

"Just like your smart phone doesn't like being dropped in water, electronic devices don't like the liquid solvent that's used to grow MOF crystals," Dr Styles said.

"It can corrode and damage the delicate circuitry.

"Our new vapour method for growing and applying MOF crystals overcomes this barrier and has the potential to disrupt the microelectronics industry.

"On the atomic scale, MOF crystals look like bird cages that can be tailor-made to be different shapes and sizes.

"They have an extremely large surface area, meaning they can be up to 80 per cent empty inside.

"The net result is a structure where almost every atom is exposed to empty space: one gram of MOF crystals has a surface area of over 5000 square metres - that's the size of a football field.

"Crucially, we can use this vast space to trap other molecules, which can change the properties of a material.

"In the case of electronics, this means we can fit a lot more transistors on a microchip, making it faster and far more powerful."

The international team, which was led by Ivo Stassen and Professor Rob Ameloot from the University of Leuven in Belgium, drew on specialist X-ray analysis techniques from CSIRO and the Australian Synchrotron to understand how the vapour process works, and how it can be used to grow the MOF crystals.

According to Dr Styles, the applications for MOFs can only be limited by your imagination.

"Another potential use for this technology would be in portable chemical sensing devices that could be used in hazardous environments such as chemical processing plants and underground mines," he said.
-end-


CSIRO Australia

Related Electronics Articles from Brightsurf:

Artificial materials for more efficient electronics
The discovery by a team of the University of Geneva of an unprecedented physical effect in a new artificial material marks a significant milestone in the lengthy process of developing ''made-to-order'' materials and more energy-efficient electronics.

The new tattoo: Drawing electronics on skin
One day, people could monitor their own health conditions by simply picking up a pencil and drawing a bioelectronic device on their skin.

Lighting the way to porous electronics and sensors
Researchers from Osaka University have created porous titanium dioxide ceramic thin films, at high temperatures and room temperature.

The ink of the future in printed electronics
A research group led by Simone Fabiano at the Laboratory of Organic Electronics, Linköping University, has created an organic material with superb conductivity that doesn't need to be doped.

Integrating electronics onto physical prototypes
MIT researchers have invented a way to integrate 'breadboards' -- flat platforms widely used for electronics prototyping -- directly onto physical products.

Something from nothing: Using waste heat to power electronics
Researchers from the University of Tsukuba developed an improved thermocell design to convert heat into electricity.

Electronics at the speed of light
A European team of researchers including physicists from the University of Konstanz has found a way of transporting electrons at times below the femtosecond range by manipulating them with light.

Electronics integrated to the muscle via 'Kirigami'
A research team in the Department of Electrical and Electronic Information Engineering and the Electronics-Inspired Interdisciplinary Research Institute (EIIRIS) at Toyohashi University of Technology has developed a donut-shaped kirigami device for electromyography (EMG) recordings.

Creating 2D heterostructures for future electronics
New research integrates nanomaterials into heterostructures, an important step toward creating nanoelectronics.

Researchers report a new way to produce curvy electronics
Contact lenses that can monitor your health as well as correct your eyesight aren't science fiction, but an efficient manufacturing method has remained elusive.

Read More: Electronics News and Electronics Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.