Hubble reveals diversity of exoplanet atmosphere

December 14, 2015

Astronomers have used the NASA/ESA Hubble Space Telescope and the NASA Spitzer Space Telescope to study the atmospheres of ten hot, Jupiter-sized exoplanets in detail, the largest number of such planets ever studied. The team was able to discover why some of these worlds seem to have less water than expected -- a long-standing mystery. The results are published in Nature.

To date, astronomers have discovered nearly 2000 planets orbiting other stars. Some of these planets are known as hot Jupiters, hot, gaseous planets with characteristics similar to those of Jupiter. They orbit very close to their stars, making their surface hot, and the planets tricky to study in detail without being overwhelmed by bright starlight.

Due to this difficulty, Hubble has only explored a handful of hot Jupiters in the past, across a limited wavelength range. These initial studies have found several planets to hold less water than expected opo1436a , opo1354a .

Now, an international team of astronomers has tackled the problem by making the largest ever study of hot Jupiters, exploring and comparing ten such planets in a bid to understand their atmospheres [1]. Only three of these planetary atmospheres had previously been studied in detail; this new sample forms the largest ever spectroscopic catalogue of exoplanet atmospheres.

The team used multiple observations from both the NASA/ESA Hubble Space Telescope and NASA's Spitzer Space Telescope. Using the power of both telescopes allowed the team to study the planets, which are of various masses, sizes, and temperatures, across an unprecedented range of wavelengths [2].

"I'm really excited to finally 'see' this wide group of planets together, as this is the first time we've had sufficient wavelength coverage to be able to compare multiple features from one planet to another," says David Sing of the University of Exeter, UK, lead author of the new paper. "We found the planetary atmospheres to be much more diverse than we expected."

All of the planets have a favourable orbit that brings them between their parent star and Earth. As the exoplanet passes in front of its host star, as seen from Earth, some of this starlight travels through the planet's outer atmosphere. "The atmosphere leaves its unique fingerprint on the starlight, which we can study when the light reaches us," explains co-author Hannah Wakeford, now at NASA Goddard Space Flight Center, USA.

These fingerprints allowed the team to extract the signatures from various elements and molecules -- including water -- and to distinguish between cloudy and cloud-free exoplanets, a property that could explain the missing water mystery.

The team's models revealed that, while apparently cloud-free exoplanets showed strong signs of water, the atmospheres of those hot Jupiters with faint water signals also contained clouds and haze -- both of which are known to hide water from view. Mystery solved!

"The alternative to this is that planets form in an environment deprived of water -- but this would require us to completely rethink our current theories of how planets are born," explained co-author Jonathan Fortney of the University of California, Santa Cruz, USA. "Our results have ruled out the dry scenario, and strongly suggest that it's simply clouds hiding the water from prying eyes."

The study of exoplanetary atmospheres is currently in its infancy, with only a handful of observations taken so far. Hubble's successor, the James Webb Space Telescope , will open a new infrared window on the study of exoplanets and their atmospheres.
-end-
Notes

[1] To date, studies of exoplanet atmospheres have been dominated by a small number of well-studied planets. The team used Hubble and Spitzer observations of two such planets, HD 209458b heic0303, opo0707b and HD 189733b heic1312, heic0720a, and used Hubble to observe eight other exoplanets -- WASP-6b, WASP-12b, WASP-17b, WASP-19b, WASP-31b, WASP-39b, HAT-P-1b, HAT-P-12b. These planets have a broad range of physical parameters.

[2] The observations spanned from the ultraviolet (0.3 micrometres) to the mid-infrared (4.5 micrometres).

More information

The Hubble Space Telescope is a project of international cooperation between ESA and NASA.

This research was presented in a paper entitled 'A continuum from clear to cloudy hot-Jupiter exoplanets', to appear in the journal Nature on Dec. 14, 2015.

The international team of astronomers in this study consists of David K. Sing (University of Exeter, UK), Jonathan J. Fortney (University of California, Santa Cruz; USA), Nikolay Nikolov (University of Exeter, UK), Hannah R. Wakeford (University of Exeter, UK), Tiffany Kataria (University of Exeter, UK), Thomas M. Evans (University of Exeter, UK), Suzanne Aigrain (University of Oxford, UK), Gilda E. Ballester (University of Arizona, USA), Adam S. Burrows (Princeton University, USA), Drake Deming (University of Maryland, USA), Jean-Michel Désert (University of Colorado, USA), Neale P. Gibson (Queen's University Belfast, UK), Gregory W. Henry (Tennessee State University, USA), Catherine M. Huitson (University of Colorado, USA), Heather A. Knutson (California Institute of Technology, USA), Alain Lecavelier des Etangs (CNRS, France), Frederic Pont (University of Exeter, UK), Adam P. Showman (University of Arizona, USA), Alfred Vidal-Madjar (CNRS, France), Michael H. Williamson (Tennessee State University, USA), Paul A. Wilson (CNRS, France).

Image credit: ESA/Hubble & NASA

Links

Contacts

David Sing
sing@astro.ex.ac.uk
44-1392725652
University of Exeter
Exeter, UK

Hannah Wakeford
hannah.wakeford@nasa.gov
1-3012867975
NASA Goddard Space Flight Center
Greenbelt, USA

Jonathan Fortney
jfortney@ucsc.edu
1-8315027285
University of California Santa Cruz
Santa Cruz, USA

Mathias Jaeger
ESA/Hubble, Public Information Officer
mjaeger@partner.eso.org
49-176-62397500
Garching, Germany

ESA/Hubble Information Centre

Related Planets Articles from Brightsurf:

Stars and planets grow up together as siblings
ALMA shows rings around the still-growing proto-star IRS 63

Two planets around a red dwarf
The 'SAINT-EX' Observatory, led by scientists from the National Centre of Competence in Research NCCR PlanetS of the University of Bern and the University of Geneva, has detected two exoplanets orbiting the star TOI-1266.

Some planets may be better for life than Earth
Researchers have identified two dozen planets outside our solar system that may have conditions more suitable for life than our own.

Fifty new planets confirmed in machine learning first
Fifty potential planets have had their existence confirmed by a new machine learning algorithm developed by University of Warwick scientists.

Rogue planets could outnumber the stars
An upcoming NASA mission could find that there are more rogue planets - planets that float in space without orbiting a sun - than there are stars in the Milky Way, a new study theorizes.

Could mini-Neptunes be irradiated ocean planets?
Many exoplanets known today are ''super-Earths'', with a radius 1.3 times that of Earth, and ''mini-Neptunes'', with 2.4 Earth radii.

As many as six billion Earth-like planets in our galaxy, according to new estimates
There may be as many as one Earth-like planet for every five Sun-like stars in the Milky way Galaxy, according to new estimates by University of British Columbia astronomers using data from NASA's Kepler mission.

How planets may form after dust sticks together
Scientists may have figured out how dust particles can stick together to form planets, according to a Rutgers co-authored study that may also help to improve industrial processes.

Planets around a black hole?
Theoreticians in two different fields defied the common knowledge that planets orbit stars like the Sun.

The rare molecule weighing in on the birth of planets
Astronomers using one of the most advanced radio telescopes have discovered a rare molecule in the dust and gas disc around a young star -- and it may provide an answer to one of the conundrums facing astronomers.

Read More: Planets News and Planets Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.