Nav: Home

Doped organic semiconductors explored

December 14, 2015

Current semiconductor technology is based on silicon, an inorganic semiconductor material in which impurity atoms are introduced or doped for use in electronic components to increase conductivity and tailor the electronic structure. However, organic solid-state materials made of conjugated molecules or polymers can also exhibit promising semiconducting properties that make their application feasible for organic electronics.

Guest molecules in a host structure

The enormous application potential of organic electronics has been clearly demonstrated for example by the success of organic LEDs (OLEDs) in the recent years. Oligothiophene (4T) and polythiophene (P3HT), two typical organic semiconductors, can be doped with a second type of molecule such as a strong electron acceptor (F4TCNQ) for example to control the electrical conductivity. However, until recently, how these guest molecules are exactly integrated into the host structure was poorly understood. A homogenous distribution analogous to that in inorganic semiconductors had therefore always been assumed.

Unusual characteristics

An international group headed by the Molecular Systems Joint Research Team at the HZB and Humboldt-Universität zu Berlin has now been able to demonstrate that this is not the case for either oligothiophene or polythiophene. The group, co-led by Dr. Ingo Salzmann and Prof. Norbert Koch, had previously experimented with and already modelled other systems to learn how doping organic semiconductors affects their electronic structure and thus their conductivity. This produced clues about unusual characteristics of this class of materials in which hybridisation of the molecular orbitals plays a key role.

They therefore fabricated a series of organic thin films with increasingly heavy levels of doping and investigated these samples using X-ray diffraction techniques at the KMC-2 beamline managed by Dr. Daniel Toebbens. They were able to precisely determine the dependence of the crystalline structure on the degree of doping using this technique.

Co-crystallites as dopants

Their results for the organic semiconductors 4T and P3HT showed that the guest molecules - quite contrary to the expectations - are not uniformly incorporated in the host lattice at all. Instead, a second crystalline phase of host/guest co-crystallites is formed in the pure crystalline host matrix. These co-crystals function in the role of dopant in place of the actual, pure doping molecules in such systems.

Better understanding for more control

"It is important to understand the fundamental processes involved in the molecular electrical doping of organic semiconductors more precisely", explains Salzmann, continuing: "If we want to successfully employ these kinds of materials in applications, we need to be able to control their electronic properties just as precisely as we customarily do today with inorganic semiconductors".

Helmholtz-Zentrum Berlin für Materialien und Energie

Related Conductivity Articles:

Quantum mechanical simulations of Earth's lower mantle minerals
The theoretical mineral physics group of Ehime University led by Dr.
Heat transport property at the lowermost part of the Earth's mantle
Lattice thermal conductivities of MgSiO3 bridgmanite and postperovskite (PPv) phases under the Earth's deepest mantle conditions were determined by quantum mechanical computer simulations.
Isotopically enriched cubic boron nitride reveals high thermal conductivity
An international team of physicists, materials scientists, and mechanical engineers has confirmed the high thermal conductivity predicted in isotopically enriched cubic boron nitride, the researchers report in the electronic edition of the journal Science. c-BN is particularly challenging to make and it's difficult to measure its thermal conductivity accurately when the value is high.
Scientists make breakthrough in ion-conducting composite membranes
Chinese researchers under the direction of Professors LI Xianfeng and ZHANG Huamin from the Dalian Institute of Chemical Physics (DICP) of the Chinese Academy of Sciences recently developed an ultrathin ion-conducting membrane with high selectivity and conductivity that can boost the power of flow batteries.
Solving the thermoelectric 'trade-off' conundrum with metallic carbon nanotubes
Scientists from Tokyo Metropolitan University have used aligned 'metallic' carbon nanotubes to create a device which converts heat to electrical energy (a thermoelectric device) with a higher power output than pure semiconducting carbon nanotubes in random networks.
Sponge-like 2D material with interesting electrical conductivity and magnetic properties
Researchers synthesize a new 2D Metal Organic Framework with an ever-growing list of possible applications.
Graphene substrate improves the conductivity of carbon nanotube network
Scientists at Aalto University, Finland, and the University of Vienna, Austria, have combined graphene and single-walled carbon nanotubes into a transparent hybrid material with conductivity higher than either component exhibits separately.
Scientists' design discovery doubles conductivity of indium oxide transparent coatings
esearchers at the University of Liverpool, University College London (UCL), NSG Group (Pilkington) and Diamond Light Source have made an important design discovery that could dramatically improve the performance of a key material used to coat touch screens and other devices.
Conductivity at the edges of graphene bilayers
For nanoribbons of bilayer graphene, whose edge atoms are arranged in zigzag patterns, the bands of electron energies which are allowed and forbidden are significantly different to those found in monolayer graphene.
New study reveals carbon nanotubes measurement possible for the first time
Swansea University scientists report an entirely new approach to manipulation of carbon nanotubes that allows physical measurements to be made on carbon nanotubes that have previously only been possible by theoretical computation.
More Conductivity News and Conductivity Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

There's so much we've yet to explore–from outer space to the deep ocean to our own brains. This hour, Manoush goes on a journey through those uncharted places, led by TED Science Curator David Biello.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Dispatch 1: Numbers
In a recent Radiolab group huddle, with coronavirus unraveling around us, the team found themselves grappling with all the numbers connected to COVID-19. Our new found 6 foot bubbles of personal space. Three percent mortality rate (or 1, or 2, or 4). 7,000 cases (now, much much more). So in the wake of that meeting, we reflect on the onslaught of numbers - what they reveal, and what they hide.  Support Radiolab today at