Doped organic semiconductors explored

December 14, 2015

Current semiconductor technology is based on silicon, an inorganic semiconductor material in which impurity atoms are introduced or doped for use in electronic components to increase conductivity and tailor the electronic structure. However, organic solid-state materials made of conjugated molecules or polymers can also exhibit promising semiconducting properties that make their application feasible for organic electronics.

Guest molecules in a host structure

The enormous application potential of organic electronics has been clearly demonstrated for example by the success of organic LEDs (OLEDs) in the recent years. Oligothiophene (4T) and polythiophene (P3HT), two typical organic semiconductors, can be doped with a second type of molecule such as a strong electron acceptor (F4TCNQ) for example to control the electrical conductivity. However, until recently, how these guest molecules are exactly integrated into the host structure was poorly understood. A homogenous distribution analogous to that in inorganic semiconductors had therefore always been assumed.

Unusual characteristics

An international group headed by the Molecular Systems Joint Research Team at the HZB and Humboldt-Universität zu Berlin has now been able to demonstrate that this is not the case for either oligothiophene or polythiophene. The group, co-led by Dr. Ingo Salzmann and Prof. Norbert Koch, had previously experimented with and already modelled other systems to learn how doping organic semiconductors affects their electronic structure and thus their conductivity. This produced clues about unusual characteristics of this class of materials in which hybridisation of the molecular orbitals plays a key role.

They therefore fabricated a series of organic thin films with increasingly heavy levels of doping and investigated these samples using X-ray diffraction techniques at the KMC-2 beamline managed by Dr. Daniel Toebbens. They were able to precisely determine the dependence of the crystalline structure on the degree of doping using this technique.

Co-crystallites as dopants

Their results for the organic semiconductors 4T and P3HT showed that the guest molecules - quite contrary to the expectations - are not uniformly incorporated in the host lattice at all. Instead, a second crystalline phase of host/guest co-crystallites is formed in the pure crystalline host matrix. These co-crystals function in the role of dopant in place of the actual, pure doping molecules in such systems.

Better understanding for more control

"It is important to understand the fundamental processes involved in the molecular electrical doping of organic semiconductors more precisely", explains Salzmann, continuing: "If we want to successfully employ these kinds of materials in applications, we need to be able to control their electronic properties just as precisely as we customarily do today with inorganic semiconductors".

Helmholtz-Zentrum Berlin für Materialien und Energie

Related Conductivity Articles from Brightsurf:

Clemson researchers decode thermal conductivity with light
Clemson researchers examine a highly efficient thermoelectric material in a new way - by using light.

Collaboration sparks new model for ceramic conductivity
As insulators, metal oxides - also known as ceramics - may not seem like obvious candidates for electrical conductivity.

Surface waves can help nanostructured devices keep their cool
A research team led by The Institute of Industrial Science, The University of Tokyo demonstrated that hybrid surface waves called surface phonon-polaritons provide enhanced thermal conductivity in nanoscale membranes.

Making plastic more transparent while also adding electrical conductivity
In an effort to improve large touchscreens, LED light panels and window-mounted infrared solar cells, researchers at the University of Michigan have made plastic conductive while also making it more transparent.

New high proton conductors with inherently oxygen deficient layers open sustainable future
Scientists at Tokyo Institute of Technology (Tokyo Tech) and the Australian Nuclear Science and Technology Organisation (ANSTO), discover a new family of high proton-conducting materials -- 'the hexagonal perovskite-related oxides' -- and shed light on the underlying mechanisms responsible for their conductivity.

Extremely low thermal conductivity in 1D soft chain structure BiSeX (X = Br, I)
Researchers found a new sort of simple one-dimensional (1D) crystal structured bismuth selenohalides (BiSeX, X = Br, I) with extremely low thermal conductivity.

Minimizing thermal conductivity of crystalline material with optimal nanostructure
Japanese researchers successfully minimized thermal conductivity by designing, fabricating, and evaluating the optimal nanostructure-multilayer materials through materials informatics (MI), which combines machine learning and molecular simulation.

Skoltech researchers use machine learning to aid oil production
Skoltech scientists and their industry colleagues have found a way to use machine learning to accurately predict rock thermal conductivity, a crucial parameter for enhanced oil recovery.

Scientists measured electrical conductivity of pure interfacial water
Skoltech scientists in collaboration with researchers from the University of Stuttgart, the Karlsruhe Institute of Technology and the Russian Quantum Center achieved the first systematic experimental measurements of the electrical conductivity of pure interfacial water, hence producing new results significantly extending our knowledge of interfacial water.

User research at BESSY II: How new materials increase the efficiency of direct ethanol fuel cells
A group from Brazil and an HZB team have investigated a novel composite membrane for ethanol fuel cells.

Read More: Conductivity News and Conductivity Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to