Nav: Home

Enhanced rock weathering could counter fossil-fuel emissions and protect our oceans

December 14, 2015

Scientists have discovered enhanced weathering of rock could counter man-made fossil fuel CO2 emissions and help to protect our oceans.

An international team, led by researchers from the University of Sheffield, found that speeding up the naturally occurring process of the weathering of rock to draw CO2 out of the atmosphere could help to significantly stabilise the climate and avert ocean acidification caused by humans burning fossil fuels.

This is the first time the large-scale effects of weathering by vegetation, roots and symbiotic microbes have been investigated using a complex modelling approach to find out how to accelerate the Earth's natural CO2 removal system to counter-act anthropogenic CO2 emissions and ocean acidification.

Weathering occurs when rainwater comes into contact with rocks under warm conditions causing the rock to breakdown chemically. This process converts CO2 to bicarbonate, a natural neutraliser, which eventually drains away via rivers to the oceans. Plants enhance this further by acidifying the soil particles around their roots. It helps if the surface of the rock particles is large such as in silicate rock like volcanic rock basalt.

Dr Lyla Taylor, from the University of Sheffield's Department of Animal and Plant Sciences, said: "Phasing down fossil fuel emissions remains a top priority but we also need to better understand potential strategies for safely removing atmospheric CO2 to avert dangerous climate change."

"We have shown that, in principle, rock weathering could indeed draw down atmospheric CO2 and could benefit coral reefs in the ocean.

"The simulations we ran were idealised as they covered some of the world's most ecologically sensitive terrestrial environments, however our evidence shows that the enhanced weathering strategy is definitely worth investigating further as it could play a significant role in offsetting the damage we are doing to the environment."

Ocean acidification is caused by the uptake of CO2 from the atmosphere which leads to an ongoing decrease in the pH of the Earth's oceans and has a range of possible harmful consequences including coral bleaching which leaves the organism vulnerable to disease.

The United Nations estimate ocean acidification could cost the global economy one trillion US dollars a year by 2100.

Lead author of the study, Professor David Beerling, also from the Department of Animal and Plant Sciences, said: "This study is important because deploying strategies for removing CO2 from the atmosphere are strongly embedded in climate stabilisation policies but don't yet exist.

"With the UN Climate Change Conference still at the forefront of everyone's mind it is vital that we investigate the safety, effectiveness and benefits of methods such as enhanced weathering so we know what our options are. Detailed theoretical modelling like this is a good place to start."

The study, which is published today (Monday 14 December 2015) in Nature Climate Change, was conducted by researchers at the University of Sheffield in collaboration with the University of Bristol, University of California, Columbia University, and the Goddard Institute for Space Studies.

This research is part of the University of Sheffield's revolutionary approaches to tackling climate change. Last month saw the launch of its £10 million Leverhulme Centre for Climate Change Mitigation led by Professor David Beerling, which will develop the science to safely remove CO2 from the atmosphere to cool the planet.
-end-
Notes to Editors

University of Sheffield


With almost 26,000 of the brightest students from around 120 countries, learning alongside over 1,200 of the best academics from across the globe, the University of Sheffield is one of the world's leading universities. A member of the UK's prestigious Russell Group of leading research-led institutions, Sheffield offers world-class teaching and research excellence across a wide range of disciplines. Unified by the power of discovery and understanding, staff and students at the university are committed to finding new ways to transform the world we live in. In 2014 it was voted the number one university in the UK for Student Experience by Times Higher Education and in the last decade has won four Queen's Anniversary Prizes in recognition of the outstanding contribution to the United Kingdom's intellectual, economic, cultural and social life. Sheffield has five Nobel Prize winners among former staff and students and its alumni go on to hold positions of great responsibility and influence all over the world, making significant contributions in their chosen fields. Global research partners and clients include Boeing, Rolls-Royce, Unilever, AstraZeneca, Glaxo SmithKline, Siemens and Airbus, as well as many UK and overseas government agencies and charitable foundations.

For further information, please visit http://www.sheffield.ac.uk

For further information please contact: Amy Pullan, Media Relations Officer, University of Sheffield, 0114 222 9859, a.l.pullan@sheffield.ac.uk

To read other news releases about the University of Sheffield, visit http://www.sheffield.ac.uk/news

University of Sheffield

Related Ocean Acidification Articles:

Ocean acidification impacts oysters' memory of environmental stress
Researchers from the University of Washington School of Aquatic and Fishery Sciences have discovered that ocean acidification impacts the ability of some oysters to pass down 'memories' of environmental trauma to their offspring.
Coral 'helper' stays robust under ocean acidification
A type of algae crucial to the survival of coral reefs may be able to resist the impacts of ocean acidification caused by climate change.
Ocean acidification is damaging shark scales
Sharks have unusual type of scales referred to as 'denticles.' A research group from South Africa and Germany that includes Jacqueline Dziergwa and Professor Dr.
New threat from ocean acidification emerges in the Southern Ocean
Scientists investigating the effect of ocean acidification on diatoms, a key group of microscopic marine organisms, phytoplankton, say they have identified a new threat from climate change -- ocean acidification is negatively impacting the extent to which diatoms in Southern Ocean waters incorporate silica into their cell walls.
Coral skeleton crystals record ocean acidification
The acidification of the oceans is recorded in the crystals of the coral skeleton.
Ocean acidification boosts algal growth but impairs ecological relationships
Shrimp fed on marine algae grown in acidic water do not undergo a sex change that is a characteristic part of their reproductive life-cycle, report Mirko Mutalipassi and colleagues at Stazione Zoologica Anton Dohrn in Italy in a study publishing June 26 in the open-access journal PLOS ONE.
Ocean acidification 'could have consequences for millions'
Ocean acidification could have serious consequences for the millions of people globally whose lives depend on coastal protection, fisheries and aquaculture, a new publication suggests.
Southern Ocean acidification puts marine organisms at risk
New research co-authored by University of Alaska indicates that acidification of the Southern Ocean will cause a layer of water to form below the surface that corrodes the shells of some sea snails.
Ocean acidification harms cod larvae more than previously thought
The Atlantic cod is one of the most important commercial fish species in the world.
Business as usual for Antarctic krill despite ocean acidification
A new IMAS-led study has found that Antarctic krill are resilient to the increasing acidification of the ocean as it absorbs more C02 from the atmosphere due to anthropogenic carbon emissions.
More Ocean Acidification News and Ocean Acidification Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Space
One of the most consistent questions we get at the show is from parents who want to know which episodes are kid-friendly and which aren't. So today, we're releasing a separate feed, Radiolab for Kids. To kick it off, we're rerunning an all-time favorite episode: Space. In the 60's, space exploration was an American obsession. This hour, we chart the path from romance to increasing cynicism. We begin with Ann Druyan, widow of Carl Sagan, with a story about the Voyager expedition, true love, and a golden record that travels through space. And astrophysicist Neil de Grasse Tyson explains the Coepernican Principle, and just how insignificant we are. Support Radiolab today at Radiolab.org/donate.